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Abstract

Starting with elementary calculus of variations and Legendre trans-
form, we shall see how the mathematical structures of conservative dy-
namics (Poincaré-Cartan integral invariant, symplectic structure, Hamil-
tonian form of the equations) arise from the simple computation of the
variations of an action integral. Integrable and close to integrable geodesic
flows on the 2-torus on the one hand, the planar circular restricted three-
body problem in the lunar case on the second hand, will be taken as
examples of hamiltonian systems with two degrees of freedom for which,
thanks to the existence of a global “surface of section”, the dynamics can
be reduced to the iteration of a “twist map” of an annulus. Other sources
as normal forms and periodic Hamiltonians are also discussed. Such maps
are the best setting for introducing fundamental features of Hamiltonian
systems : the periodic orbits stemming from the Poincaré-Birkhoff fixed
point theorem, the Aubry-Mather sets, simplest examples of weak K.A.M.
solutions, and the quasi-periodic motions consequence of the Moser invari-
ant curve theorem, simplest examples of K.A.M. solutions.
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1 The Euler-Lagrange equations

1.1 Introduction

Classical mechanics (see [A]) deals in general with second order ordinary differ-
ential equations of the form

q̈ = F (q, q̇). (E1)

The terms depending on the velocities q̇ are termed “dissipative”: they corre-
spond to frictions (damping) or excitations. In their absence, one gets “conser-
vative” equations q̈ = F (q) which are often of the form

q̈ = ∇U(q), (E2)

where U is a “potential function” and the gradient is relative to some Rie-
mannian metric g on the configuration space, which defines a “kinetic energy”.
The paradigmatic example is “the n-body problem”, where the configuration
q = (~r1, ~r2, . . . , ~rn) ∈ En is the set of positions of n point masses in an euclidean
space E and the equations are

~̈ri = g
∑
j 6=i

mj(~rj − ~ri)
||~ri − ~rj ||3E

·

Here the mi are positive masses, the potential function is

U(q) =
∑
i<j

mimj

||~ri − ~rj ||E

and the Riemannian metric g is defined by the (constant) scalar product

g(r, s) =< r, s >g=

n∑
i=1

mi 〈~ri, ~si〉E if r = (~r1, ~r2, . . . , ~rn), s = (~s1, ~s2, . . . , ~sn).

Such equations are known, since Lagrange, to be the so-called Euler-Lagrange
equations of an “action functional”, the Lagrangian action

∫
L
(
q(t), q̇(t)

)
dt,

where the Lagrangian

L(q, q̇)) =
1

2
||q̇||2g + U(q),

is the difference between the kinetic energy 1
2 ||q̇||

2
g and the potential energy

−U(q). This means that the solutions of (E2) are exactly the set of “extremal”
curves of the action functional. It is the mathematical formulation of the so-
called principle of least action. In the case when U ≡ 0, one gets the “geodesics”
of the Riemannian metric g. This origin makes natural the following “convexity”
hypotheses:
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Warning. The configuration space will be noted M . It could be an arbitrary n-
dimensional differentiable manifold but, for convenience, the reader may suppose
that it is either an open subset of Rn or the n-torus Tn = Rn/Zn. This is in
particular assumed when we work with global coordinates on the tangent bundle
TM which, in such cases is canonically identified with the product M × Rn.

General convexity hypotheses. The C∞ (C3 would be enough), possibly
time-dependent, Lagrangian L(q, q̇, t)

L : TM × R = M × Rn × R→ R

will be assumed to satisfy the “Tonelli” hypotheses which insure the existence
of minimizers under natural hypotheses of coercivity1:

1) L is strictly convex in q̇, that is (in the sense of quadratic forms) :

∀q, q̇, t, ∂
2L

∂q̇2
(q, q̇, t) > 0;

Note that this makes sense intrinsically because the derivatives of the restriction
of L to the vector space TqM are well defined.

2) L is superlinear in q̇ :

∀C ∈ R,∃D ∈ R, ∀q, q̇, t, L(q, q̇, t) ≥ C||q̇|| −D,

that is lim||q̇||→∞
L(q,q̇,t)
||q̇|| = +∞ uniformly in (q, t).

1.2 The fundamental computation

The whole structure of classical conservative mechanics is the consequence of a
single computation, the one giving the variation of the action AL(γ) of a path
γ : [a, b]→M, t 7→ q(t) (the reader may suppose that M = Ω is an open subset
of Rn):

AL(γ) =

∫ b

a

L(q(t), q̇(t), t) dt, where q̇(t) =
dq

dt
(t),

under an arbitrary variation of the path where neither the end-points nor the
interval of variation of the parameter are fixed. Let us start with a regular (say
at least C2) path γ and consider a variation of γ, that is a family of paths

γu : [a(u), b(u)]→M, t 7→ q(u, t), u ∈]− ε,+ε[, γ0 = γ,

regular with respect to both variables (u, t) (these regularity hypotheses will
soon be weakened). The infinitesimal variation is by definition the vector field
on M along γ defined by

X(t) = X0(t) =
∂q

∂u
(0, t).

1there are of course important situations where convexity does not hold, for example
Lorentzian metrics
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It plays the role of a tangent vector at γ to the “manifold” of paths. More
generally, we shall use the following notations:

Xu(t) =
∂q

∂u
(u, t), q̇(u, t) =

∂q

∂t
(u, t).

While q̇(u, t) is simply the velocity at time t of the path γu, the vector field
t 7→ Xu(t) along γu, is the velocity at u of the “path of paths” u 7→ γu.

Computing the derivative of the function u 7→ AL(γu) via an integration by
parts, one gets the following

Fundamental formula:

d

du

(
AL
(
γu
))

=
d

du

∫ b(u)

a(u)

L
(
q(u, t), q̇(u, t), t

)
dt

=

∫ b(u)

a(u)

[
∂L

∂q

(
q(u, t), q̇(u, t), t

)
− d

dt

(
∂L

∂q̇

(
q(u, t), q̇(u, t), t

))]
·Xu(t) dt

+
∂L

∂q̇

(
q(u, t), q̇(u, t), t

)
·Xu(t)

∣∣∣
t=b(u)

− ∂L

∂q̇

(
q(u, t), q̇(u, t), t

)
·Xu(t)

∣∣∣
t=a(u)

+ L
(
q(u, t), q̇(u, t), t

) db
du

(u)
∣∣∣
t=b(u)

− L
(
q(u, t), q̇(u, t), t

)da
du

(u)
∣∣∣
t=a(u)

,

a formula that we shall abreviate in

dAL
du

=

∫ b

a

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· ∂q
∂u

dt +

[
∂L

∂q̇
· ∂q
∂u

+ L
dt

du

]b
a

.

Restricting to variations parametrized by a fixed interval [a, b] and such that
the end-points are fixed, i.e. q(u, a) = q(0, a) and q(u, b) = q(0, b), one gets the
classical Euler-Lagrange equations for the extremals, that is the paths γ such
that dAL(γ)X = 0 for any infinitesimal variation X with fixed interval and
fixed end points (i.e. X(a) = 0 and X(b) = 0):

d

dt

(
∂L

∂q̇i

(
q(t), q̇(t), t

))
=
∂L

∂qi

(
q(t), q̇(t), t

)
, i = 1, · · · , n. (E)

Such writing supposes of course that we have global coordinates q = (q1, · · · , qn)
in M = Ω ⊂ Rn. We shall give soon an intrinsic interpretation of these equa-
tions. In order to put equations E into a nice “explicit” form, we notice that
the “general hypotheses” we made on L imply that the Legendre mapping

Λ : TM × R→ T ∗M × R

defined intrinsically (same reason as for the convexity hypotheses) by

Λ(q, q̇, t) = (q, p, t), p =
∂L

∂q̇
(q, q̇, t),

is a global diffeomorphism (strict convexity for all p of q̇ 7→ L(q, q̇, t)−p·q̇ implies
the injectivity of Λ and surlinearity implies that it is proper, hence surjective).
One says that L is globally regular. From this, two important results follow:
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1) Regularity of extremals: any extremal is as regular as L. This means that
if we had assumed paths to be only C0 and piecewise C1, and the variations
accordingly, the extremals among paths with fixed interval of definition and
fixed ends would still be as regular as the Lagrangian. The proof consists in
exchanging the roles of the two terms in the integration by parts: this leads to
the integral form of the equations

∂L

∂q̇i

(
q(t), q̇(t), t

)
=

∫ t

a

∂L

∂qi

(
q(s), q̇(s), s

)
ds+ Ci ,

where the Ci are constants and implies the regularity by a bootstrap argu-
ment: precisely, q(t) being C0 and piecewise C1, the above equations imply
that p(t) = ∂L

∂q̇i

(
q(t), q̇(t), t

)
is continuous. Hence Λ(q(t), q̇(t), t) = (q(t), p(t), t)

is continuous, which because Λ is a homeorphism implies the continuity of q̇(t),
and so on by induction.
This justifies our working only with regular paths. In the case of minimizers,
one could even work with absolutely continuous paths. In fact, small enough
extremals are minimizers and their regularity amounts, as in the case of straight
lines, to the remark that a broken curve can always be shortened by smoothing
the angle.

2) Existence of the Euler-Lagrange flows: it follows from the fact that Λ
is a diffeomorphism that equations (E) define a (time-dependant if L is) vector
field XL in TM : in coordinates these equations take the “mixed” form

dpi
dt

=
∂L

dqi
(q, q̇, t),

dqi
dt

= q̇i.

One concludes by using Λ−1 as a change from the (q, p, t) to the (q, q̇, t). More
computationally, in coordinates, one can use the invertibility at each point of

the Hessian matrix
(

∂2L
∂q̇i∂q̇j

)
to transform the implicit differential equations (E)

into explicit ones of the form

q̈i = f(q, q̇, t).

We end this section with two important consequences of the fundamental com-
putation and some remarks on “parametric Lagrangians”: independent 3) In-

ternal variations and the energy: Suppose L and c are of class C2, and let
us consider only variations of the form

q(u, t) = q
(
t+ uξ(t)

)
, ξ(a) = ξ(b) = 0,

that is parameter changes (sometimes called internal variations).
As X(t) = ∂q

∂u (0, t) = q̇(t)ξ(t) and ξ(t) is arbitrary, one deduces from Euler-
Lagrange equations that the extremality condition with respect to such varia-
tions reads [

d

dt

(
∂L

∂q̇

(
q(t), q̇(t), t

))
− ∂L

∂q

(
q(t), q̇(t), t

)]
· q̇(t) = 0,
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that is

d

dt

(
∂L

∂q̇

(
q(t), q̇(t), t

)
· q̇(t)− L

(
q(t), q̇(t), t

))
= −∂L

∂t

(
q(t), q̇(t), t

)
.

This is the conservation of the energy H = p · q̇ − L by the extremals of an
autonomous (i.e. independent of time) Lagrangien L(q, q̇). We shall come back
to this fundamental point.

4) Symmetries and first integrals (Noether’s theorem): Let X be a
vector field on M , L : TM × R a Lagrangian. Suppose that L is left invariant
under the (possibly local) flow ϕu of X, that is for all q, t, u such that the
left-hand side is defined,

L
(
ϕu(q), dϕu(q)q̇, t

)
= L(q, q̇, t).

Then the following expression is a first integral of the Euler-Lagrange equations,
which means that it remains constant along any extremal q(t):

(p ·X)(t) =
∂L

∂q̇
(q(t), q̇(t), t) ·X

(
q(t)

)
.

For the proof, one considers the family of curves q(u, t) = ϕu
(
q(t)

)
. They are

extremals of L and the action A(u) is independent of u, which gives the result.
In the next section we shall encounter the trivial case of this theorem where L
does not depend on one of the variables qi (one says that qi is ignorable) and
p.X is simply ∂L

∂q̇i
.

5) Parametric Lagrangians and again the energy: These are the La-
grangians which are homogeneous of degree 1 in the velocities q̇i, as is for ex-
ample the integrand ||q̇|| of the length integral. The formula ruling the change
of variable in an integral implies that the parametrization (the gauge) of the ex-
tremals is not fixed. Such Lagrangians appear naturally, on the one hand when
integrating 1-forms (see later), on the other hand when one seeks to transform
a time-dependant Lagrangian L(q, q̇, t) defined on M , into a time independent
Lagrangian L(q, q̇, qn+1, q̇n+1) defined on M × R+ by setting

L(q, qn+1, q̇, q̇n+1) = L(q,
1

q̇n+1
q̇, qn+1)q̇n+1.

Let Λ : TM ×R→ T ∗M ×R and Ξ : T (M ×R)→ T ∗(M ×R) be the Legendre
mappings respectively associated to L and L :

Λ(q, q̇, t) = (q, p, t), Ξ(q, qn+1, q̇, q̇n+1) = (q, qn+1, P, Pn+1).

One has

Λ(q,
1

q̇n+1
q̇, qn+1) = (q, P, qn+1).

The homogeneity of L in the velocities implies the Euler identity

L(q, qn+1, q̇, q̇n+1) = P · q̇ + Pn+1q̇n+1, .
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After dividing by q̇n+1, this becomes

Pn+1 + [p · q̇ − L](q,
1

q̇n+1
q̇, qn+1) = 0.

Supposing that L is regular and introducing the total energy (the Hamiltonian)

H(q, p, t) = [p · q̇ − L] ◦ Λ−1(p, q, t),

we get for L the following constraint making clear the fact that Ξ is not of
maximal rank (non regularity of L) :

Pn+1 +H(q, P, qn+1) = 0.

The extremals of L can be recovered from the solutions of the Euler-Lagrange
equations associated to L, that is

dPn+1

dτ
=
∂L

∂t
(q,

1

q̇n+1
q̇, qn+1)q̇n+1,

dP

dτ
=
∂L

∂q
(q,

1

q̇n+1
q̇, qn+1)q̇n+1.

(Notice that the first equation is equivalent to the one obtained above by looking
at the internal variations.) Indeed, if

(
q(τ), qn+1(τ)

)
is an extremal of L, the

curve t 7→ q
(
τ(t)

)
defined by setting t = qn+1(τ) (i.e. fixing the gauge), is an

extremal of L. Conversely, to any extremal q(t) of L corresponds the extremal(
q(τ), τ

)
of L.

Transforming L into L allows applying Noether’s theorem to space-time sym-
metries of a Lagrangian, i.e. to a vector field X on M × R+. We can recover
in this way the conservation of the energy for the autonomous Lagrangians as
a consequence of the invariance of the Lagrangian under time translations.

6) Parametric Lagrangians again and the Cartan formula: Let V be a
manifold, $ a differential 1-form on V . To each compact oriented regular curve
(with boundary) (i.e. oriented 1-dimensional submanifold) Γ of V , we attach
the real number A(Γ) =

∫
Γ
$. If u 7→ Γu is a differentiable family of such

curves, we shall denote by A(u) the function u 7→ A
(
Γu
)
.

Definition 1 The curve Γ is stationary for A if dA
du (0) = 0 for each variation

Γu of Γ0 with fixed ends.

This definition makes sense exactly because in local coordinates q1, · · · , qN , if
$ =

∑N
i=1$i(q)dqi and if [a, b] 7→ q(t) is an oriented parametrization of Γ, the

Lagrangian L(q, q̇) =
∑N
i=1$i(q)q̇i is a parametric one, and hence the action is

independent of the choice of the parametrization.

Lemma 2 The curve Γ is stationary for A =
∫

Γ
$ if and only if it is tangent

at each point to the kernel of d$, that is if Γ is a caracteristic curve of d$.
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Proof. Choose a parametrization t 7→ q(u, t) of a family Γu defined on an
interval [a, b] independent of u but with free endpoints. Let t 7→ X(t) = ∂q

∂u (0, t)
be the infinitesimal variation of Γ0 = Γ. When applied to the Lagrangian
L(q, q̇) =

∑N
i=1$i(q)ẋi the formula giving the variation becomes

dA
du

(0) =

∫
Γ

iXd$ + [$(X)]
b
a .

It follows that a characteristic curve of d$ is stationary among families of curves
whose endpoints describe a curve tangent to the kernel of $.

Now, if X is a vector field with flow ϕu and $ a differential 1-form on the
manifold V , let us apply the above formula to the family Γu = ϕu(Γ). One gets

dA
du

(0) =
d

du |u=0

(∫
Γu

$

)
=

∫
Γ

d

du |u=0

ϕ∗u$ =

∫
Γ

LX$,

where LX is the Lie derivative. Finally, for any curve Γ,∫
Γ

LX$ =

∫
Γ

iXd$ + [$(X)]
b
a =

∫
Γ

iXd$ + diX$,

which implies the Cartan formula for 1-forms:

LX$ = iXd$ + diX$.

Replacing the curves by submanifolds dimension k, one proves the Cartan for-
mula for differential k-forms.

1.3 Changing coordinates

Let ϕ : M1 →M2 be a diffeomorphism and let Tϕ : TM1 → TM2 be its tangent
map, defined by

Tϕ(x, ẋ) =
(
ϕ(x), dϕ(x)ẋ

)
.

Definition 3 Let the Lagrangians L1 : TM1 × R→ R and L2 : TM2 × R→ R
be such that L1 = L2 ◦ (Tϕ× Id). One says that L1 is the inverse image of L2

(resp. that L2 is the direct image of L1).

The following fact shows how simple it is to change coordinates in the Euler-
Lagrange equations:: the Euler-Lagrange equations have exactly the same form
in any (local) system of coordinates on M . This will be superseded only by the
Hamiltonian theory where configuration and velocity (more exactly momentum)
coordinates will be on the same footing.

This assertion is obvious because if c1 : [a, b] → M1 and c2 : [a, b] → M2 are
such that c2 = ϕ◦c1, we have L1

(
c1(t), ċ1(t), t

)
= L2

(
c2(t), ċ2(t), t

)
, from which

follows that c1 is an extremal of L1 if and only if c2 is an extremal of L2. (Here
it was obviously more convenient to use the notation t 7→ c(t) than t 7→ q(t) for
the path c)
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More conceptually, if we define [L]c(t) ∈ T ∗c(t)M (the dual of Tc(t)M) by

[L]c(t) :=
∂L

∂q

(
c(t), ċ(t), t

)
− d

dt

(
∂L

∂q̇

(
c(t), ċ(t), t

))
,

one can show that the mapping [L]c : [a, b]→ T ∗M is a field of covectors tangent
to M along the curve c : [a, b]→M , which is intrinsically defined, independently
of the choice of coordinates. This means that, with the above notations,

[L1]c1(t) = [L2]c2(t) ◦ dϕ
(
c1(t)

)
.

Finally, the derivative of the action takes the intrinsic (i.e. geometric) form

dAL(c)X =

∫ b

a

< [L]c(t), X(t) > dt,

where for each t <,> is the pairing between a vector X(t) and a covector [L]c(t)
tangent to M at c(t).

1.4 The simplest example of a completely integrable sys-
tem : the geodesic flow of a flat torus

The Lagangian L : T ∗T2 = R2/(2πZ)2 × R2 → R is L(q, q̇) = 1
2 ||q̇||

2. We shall

write the coordinates q = (ϕ,ψ) and q̇ = (ϕ̇, ψ̇) (figure 1.1).

Figure 1.1

The Euler-Lagrange equation (E) is q̈ = 0 and the extremals, the geodesics of
T2, are the images by the canonical projection of the straight lines of R2 with an
affine parametrization. The Legendre diffeomorphism is defined by p = q and
fixing the energy H(p, q) = 1

2 ||p||
2 amounts to fixing the norm of the velocity.

If the energy is different from 0, the energy hypersurface is diffeomorphic to
T3 = (R/2πZ)

3
. The flow is depicted on figure 1.2.

Figure 1.2

10



The whole phase space TT2 (or T ∗T2) is foliated by the 2-dimensional tori q̇ =
constant (or p = constant) which are invariant under the flow of XL. On these
tori, the vector field is constant (the flow is a flow of translations) and, depending
on the rationality or irrationality of ψ̇/ϕ̇, the integral curves on the torus are
all periodic or all dense.

Notice that the tori on which the integral curves are dense have a dynamical
definition, as the closure of any of the integral curves they contain. This is not
the case of the “periodic” tori which are a mere union of closed integral curves.

1.5 Opening of a resonance : the geodesic flow of a torus
of revolution

We embed the 2-torus T2 = R2/(2πZ)
2

in R3 by the mapping (r < 1)

f : (ϕ,ψ) 7→
(
(x = 1 + r cosψ) cosϕ, y = (1 + r cosψ) sinϕ, z = r sinψ

)
.

The image is invariant under rotation around the z-axis. The Lagrangian is the
kinetic energy, that is one half of the euclidean square length of the tangent
vector df(ϕ,ψ)(ϕ̇, ψ̇), that is

L(ϕ,ψ, ϕ̇, ψ̇) =
1

2

(
(1 + r cosψ)2ϕ̇2 + r2ψ̇2

)
.

Its extremals are the geodesics of the induced metric. The conservation of energy
says that they are parametrized with constant velocity, i.e. proportionnally to
the arc length. As above, without loosing any geometric information, we fix the
velocity to 1. The Euler-Lagrange equations are

d

dt

(
1 + r cosψ)2ϕ̇

)
= 0,

d

dt

(
r2ψ̇

)
= −r sinψ(1 + r cosψ)ϕ̇2.

The first expresses the invariance under rotation around Oz and can be in-
terpreted as the conservation of the angular momentum around Oz. It is the
analogue of the conservation of the angle θ in the flat case. Fixing the energy is
fixing the velocity and the non-zero energy levels are diffeomorphic to the unit
tangent bundle T 1T2 ≡ T3 with global angular coordinates (ϕ,ψ, θ) defined by
choosing as third coordinate the Riemannian angle θ :

ϕ̇ =
cos θ

1 + r cosψ
, ψ̇ =

sin θ

r
.

The first Euler-Lagrange equation becomes the constancy of the Clairaut inte-
gral :

(1 + r cosψ) cos θ = constant.

Figures 1.4 represents the level curves of this function in the plane (ψ, θ). Figure
1.3 represents the level curves of the function θ, which plays for the flat torus
the role of the Clairaut integral.

11



Figure 1.3 Figure 1.4
In the coordinates (ϕ,ψ, θ), the equations become

dϕ

dt
=

cos θ

1 + r cosψ
,

dψ

dt
=

sin θ

r
,

dθ

dt
=
− cos θ sinψ

1 + r cosψ
.

Because of the invariance under rotation, they are independent of ϕ, hence they
admit a direct image in the torus (ψ, θ) which consists in ignoring the first
equation. The same is of course true for the flat metric. The integral curves
of this direct image are contained in the level curves of the Clairaut integral,
which explains the arrows of figures 1.3 and 1.4.

In each open band θ ∈ ]− π
2 +kπ, π2 +kπ[ , k ∈ Z, the flow looks qualitatively like

the flow of a conservative pendulum. The rotations of the pendulum correspond
to integral curves belonging to invariant tori which, as in the flat case, project
biunivocally onto the configuration torus (ϕ, θ) (type A, figure 1.5),

Figure 1.5
while oscillations correspond to integral curves belonging to invariant tori which
project neither injectively nor surjectively but on an annulus whose boundary
is a caustic (type B, figure 1.6). The latter tori fill the resonance zone.

Figure 1.6
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As in the flat case, in each of these invariant tori, integral curves are either all
periodic or all dense. A new feature is the existence in each non-zero energy
level of 4 isolated periodic solutions, which correspond to the 2 geodesics defined
by the intersection of the torus with the plane z = 0, each one with two possible
directions of velocity. The inner one (ψ = π, θ = 0 or ψ = π, θ = π) is hyperbolic
hence unstable. The set of integral curves with the same energy which are
positively (negatively) asymptotic to it define the stable (unstable) manifold
of this periodic orbit. These sets happen to coincide here. A corresponding
geodesic (type C) is represented on figure 1.7. Their union is a surface which
makes the transition between the two kinds of invariant tori oustside and inside
the resonance zone. The outer one (ψ = 0, θ = 0 or ψ = 0, θ = π) is elliptic,
hence stable. In its energy level, it is “surrounded” by invariant tori.

Figure 1.7

We have now two kinds of invariant sets dynamically defined : the invariant tori
with dense integral curves and the stable = unstable manifolds of the hyperbolic
periodic solutions.

A geometric interlude. Let us consider a type B geodesic close enough to the
outside elliptic periodic geodesic (one chooses an orientation on it) around which
it oscillates, intersecting it an infinite number of times. We shall show that the
time between two successive intersections, i.e. the length of the corresponding
geodesic segment, tends to π

√
r(1 + r) when the intersection angle θ at the

initial instant tends to 0 (figure 1.8, left; in the flat case, there is no oscillation
and the time between two intersections tends to∞ when θ tends to 0, see figure
1.8, right).

 

 

θ

tore de révolution                                            tore plat

ψ=0

θ

θ

Figure 1.8

Here is a sketch of proof: close to the closed curve ψ = θ = 0, the geodesic flow

dϕ

dt
=

cos θ

1 + r cosψ
,

dψ

dt
=

sin θ

r
,

dθ

dt
=
− cos θ sinψ

1 + r cosψ
,
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may be replaced by the flow of its linearization along this curve, obtained by
replacing the vector field by its Taylor expansion at order 1 in the variables
(ψ, θ) at the point (0, 0):

dϕ

dt
=

1

1 + r
,

dψ

dt
=
θ

r
,

dθ

dt
=
−ψ

1 + r
.

In such a neighborhood, a type B invariant torus is replaced by an invariant
otrus of the linearized equation, that is a level hypersurface of the function

1 + r − rψ
2

2 − (1 + r) θ
2

2 , which is the Taylor expansion of order 2 at (0, 0) of
the Clairaut integral (1 + r cosψ) cos θ. When the initial angle θ tends to 0, the
time between two intersections of a type B geodesic and the elliptic periodic
geodesic tends to half the period of the solutions of the linear equation

dψ

dt
=
θ

r
,

dθ

dt
=
−ψ

1 + r
.

This time can be readily computed from the eigenvalues ± i√
r(1+r)

of the matrix

of the equation: it is equal to τ = π
√
r(1 + r), which is also the limit when θ

tends to 0 of the distance between two consecutive intersections. If the torus
of revolution is replaced by a round sphere of radius ρ in R3, the géodesics are
great circles and intersect two by two in antipodal points; the length of a half
grat circle is · · ·πρ = π

√
ρ · ρ, a formula very similar to the above one.

Indeed, 1
r(1+r) is the Gauss curvature of the torus at any point of its elliptic

geodesic. With our little computation we have proved a very remarquable result:
the a priori extrinsic (i.e.defined by the embedding in R3 of the torus) quantity
τ = π

√
r(1 + r) depends only on the intrinsic geometry of the torus (i.e. of

its riemannian metric). That is, we have proved, in this very particular case,
Gauss’ Theorema egregium (i.e. the wonderful theorem).

1.6 Straightening the flow on the invariant tori

The invariant tori Tθ0 of the geodesic flow of the flat torus T2 are defined by
the equations θ = θ0; hence, they project bijectively on the geometric torus T2.
In the coordinates (ϕ,ψ), the restriction Φt to Tθ0 of the geodesic flow is affine:

Φt(ϕ,ψ) = (ϕ+ t cos θ0, ψ + t sin θ0).

The existence on an invariant torus of global angular coordinates such the re-
striction of the geodesic flow is affine is a very general property of the so-called
completely integrable hamiltonian systems. We shall show now that this prop-
erty is shared by the invariant tori of the geodesic flow of a torus of revolution.
The proof is essentially contained in figure 9, the important thing being the
invariance under translations (rotations) ϕ 7→ ϕ + ϕ0 of the time t0 necessary
for an integral curve starting on the circle S defined by η = η0 to come back to
it (η being an angular coordinate on a level circle of the Clairaut integral in the
torus (ψ, θ)).

14



One defines a diffeomorphism F of the torus (ϕ, η) onto itself by the formula

F (ϕ, η) =

(
ϕ0(ϕ, η) + ω

t(η)

t0
, η0 + 2π

t(η)

t0

)
,

where ω is the angle of the rotation P , which is the first return map of the
flow on the circle S,

(
ϕ0(ϕ, η), η0

)
is the first intersection point with S of the

integral curve through (ϕ, η) described in the negative direction (see figure 9),
t(ϕ, η) = t(η) is the time taken by the flow between these two points, that is
Φt(η)

(
ϕ0(ϕ, η), η0

)
= (ϕ, η) (where Φt is the flow), and t0 is the return time on

S.

Figure 1.9
The difféomorphism F transforms le vector field on T into the constant vector

field
(
ω
t0
, 2π
t0

)
, and hence the flow into the affine flow

(ϕ, η) 7→
(
ϕ+ ω

t

t0
, η + 2π

t

t0

)
.
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2 Integral invariants and Hamilton’s equations

2.1 The Poincaré-Cartan integral invariant

From the fundamental formula, it follows that, if γu is a family of extremals of
the action AL =

∫
Ldt, we get

dAL
du

=

[
∂L

∂q̇
· ∂q
∂u

+ L
dt

du

]b
a

.

We replace now the partial derivative ∂q
∂u (that is ∂Γ

∂u ), deprived of geometric
meaning, by the “effective variation”

d

du

(
q
(
u, t(u)

))
:=

dq

du
=
∂q

∂u
+
∂q

∂t

dt

du
=
∂q

∂u
+ q̇

dt

du
, t(u) = a(u) or b(u),

of the extremities of the path γu as a fonction of u (figure 2.1).

Figure 2.1

This transforms the expression of d
du (AL(γu)) for a family of extremals into

an identity between differential 1-forms on the interval U of definition of the
parameter u :

dAL = δ∗b$L − δ∗a$L,

where δa, δb : U → T ∗M × R denote the mappings

δt(u) =

(
q
(
u, t(u)

)
,
∂q

∂t

(
u, t(u)

)
, t(u)

)
, t(u) = a(u) or b(u),

and $L is the differential 1-form on TM × R defined by

$L =
∂L

∂q̇
(q, q̇, t) · dq −

(
∂L

∂q̇
(q, q̇, t) · q̇ − L(q, q̇, t)

)
dt.

Finally, we can simplify the formulas by transporting everything on the cotan-
gent side with the Legendre diffeomorphism Λ : (q, q̇, t) 7→ (q, p, t). The function
on T ∗M × R defined by

H(q, p, t) = p · q̇ − L(q, q̇, t),

where q̇ is expressed in terms of p, q, t via Λ is called the Legendre transform of
L, or the Hamiltonian associated to the Lagrangian L. We have already met
this function under the name of “total energy”.
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If $H denotes the 1-form on T ∗M × R defined by

$H = p · dq −H(q, p, t)dt,

the formula for the unconstrained variations of extremals becomes

dAL = (Λ ◦ δb)∗$H − (Λ ◦ δa)∗$H .

The 1-form $H is the Poincaré-Cartan integral invariant (tenseur impulsion-
énergie in Cartan’s terminology).

Rewriting the action. As L = p · q̇−H, the action istself can now be written

as the integral of $H = p · dq−Hdt on the lift Γ∗(t) =
(
q(t), ∂L∂q̇ (q(t), q̇(t), t), t

)
to T ∗M × R of the path γ(t) in M :

AL(γ) =

∫
Γ∗
$H .

This expression is the basis of the least action principles of Hamilton and Mau-
pertuis (see theorems 9 and 11).

2.2 The symplectic structure and Hamilton’s equations

Euler-Lagrange equations are equivalent to saying that a path t 7→ q(t) in M is
an extremal if and only if the parametrized curve in T ∗M × R

t 7→
(
q(t),

∂L

∂q̇

(
q(t), q̇(t), t

)
, t

)
= Λ

(
q(t), q̇(t), t

)
is an integral curve of the vector field

Ξ∗H = (X∗H , 1) = Λ∗(XL, 1)

on T ∗M × R. The last formula of the preceding section then implies that,
if Ca and Cb are two oriented loops in T ∗M × R, such that Cb − Ca is the
oriented boundary of a cylinder C generated by pieces of of integral curves of
Ξ∗H = (X∗H , 1), one has∫

Ca

p · dq −H(q, p, t)dt =

∫
Cb

p · dq −H(q, p, t)dt .

Definition 4 (Integral invariant) Let V be a manifold, Ξ a vector field on
V . One says that the 1-form $ is an integal invariant of Ξ if the equality∫
C0
$ =

∫
C1
$ holds whatever be the couple of oriented loops C0, C1 such that

C0 − C1 be the oriented boundary of a cylinder C made of integral segments of
the vector field Ξ.

Hence, the Poincaré-Cartan 1-form $H = p · dq −Hdt is an integral invariant
of the vector field Ξ∗H = (X∗H , 1) on V = T ∗M ×R. In E. Cartan’s terminology,
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what we have called an integral invariant is a (relative and complete) integral
invariant: relative because its invariance holds only if the integral is taken on
loops Ci, complete because C0 and C1 are not supposed to be the image of each
other under the flow of Ξ (i.e. the time to go from one to the other is not the
same for all segments).

Figure 2.2

However, an important property of X∗H comes from applying Stokes formula to
small disks Da et Db contained respectively in the time slices T ∗M × {a} and
T ∗M × {b} and such that Db = ϕba(Da) is the image of Da under the flow of
Ξ∗H . Indeed, one gets the

Theorem 5 The time-dependent vector field X∗H defined on T ∗M , preserves
the standard symplectic 2-form ω =

∑n
i=1 dpi ∧ dqi.

A corollary of the preservation of the symplectic structure is

Theorem 6 (Liouville’s theorem) The flow of the time-dependent vector field
X∗H preserves the 2n-form ωn, hence the Lebesgue measure (volume).

Hamilton’s equations. We now deduce the structure of the vector field X∗H
(i.e. the structure of the Euler-Lagrange equations (E) seen from the cotangent
side) from the following characterization of integral invariants:

Lemma 7 (Infinitesimal characterization of integral invariants) The 1-
form $ on the manifold V is an integral invariant of the vector field Ξ if and
only if, at each point v ∈ V the vector Ξ(v) belongs to the kernel of the bilinear
form d$(v), i.e. if iΞd$ = 0.

Proof. One may suppose that Ξ does not vanish. Let C be an embedded
cylinder made of segments of integral curves of Ξ, and C1 − C0 the oriented
boundary of C. We suppose that C0 and C1 bound oriented embedded disks,
respectively D0 and D1, where D1 is obtained from D0 by following the integral
curves of Ξ (of course, the time is not supposed to be constant). The formal
difference C1 − C0 is also the oriented boundary of D1 −D0 (figure 2.3). Two
these two possibilities correspond two proofs of the lemma, both based on Stokes
formula.
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Figure 2.3
In the first one, one writes

0 =

∫
C1

$ −
∫
C0

$ =

∫
C

d$.

Being true for all cylinders C made of segments of integral curves, it implies the
existence of a function F which to each couple (I0, I1) of integral segments of Ξ
associates the common value of the integral of d$ on any oriented“rectangle”
R, which is the union of a family of integral segments joining I0 to I1 (figure
2.4(i)). It remains to notice that this function is necessarily identically equal to
0 (figure 2.4(ii)).

Figure 2.4(i) Figure 2.4(ii)

Finally, considering two integral segments I0 et I1 which are infinitely close (or
by introducing adapted coordinates on a rectangle), one deduces that for any
point v ∈ V , and any tangent vector ξ at this point,

d$(v)(Ξ(v), ξ) = 0,

which is the assertion of the lemma.

In the second proof, one writes

0 =

∫
C1

$ −
∫
C0

$ =

∫
D1

d$ −
∫
D0

d$.

This implies the preservation of the 2-form d$ by any vector field on V whose
integral curves coincide with those of Ξ, that is any vector field of the form fΞ,
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where f is a differentiable function on V which does not vanish. Infinitesimally,
this is equivalent to

∀f, LfΞd$ = 0,

where LXω = iXdω+ diXω is the Lie derivative of ω along X (see section 7.7),
hence

∀f, LfΞd$ = difΞd$ = f(diΞd$) + df ∧ (iΞd$) = 0.

If f is constant, df = 0 hence diΞd$ = 0. But then, for any f , df ∧ (iΞd$) = 0,
from which follows that iΞd$ = 0, which is the conclusion of the lemma

Applying this to the integral invariant p · dq −Hdt determines the direction of
Ξ∗H , hence X∗H , because the kernel of

d(p · dq −Hdt) =

n∑
i=1

[(
dpi +

∂H

∂qi
dt

)
∧
(
dqi −

∂H

∂pi
dt

)]
,

is easily seen to be 1-dimensional and generated at each point (p, q, t) by the

vector
(
−∂H∂q (q, p, t), ∂H∂p (q, p, t), 1

)
.

Finally, we get

X∗H =

(
−∂H
∂q1

, · · · − ∂H

∂qn
,
∂H

∂p1
, · · · ∂H

∂pn

)
.

Hence, when transported on the cotangent side by the Legendre diffeomorphism,
Euler-Lagrange equations (E) take the particularly symmetric form of Hamil-
ton’s equations (or canonical equations) :

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, i = 1 · · ·n.

As the equations depend only on H, this justifies the notation X∗H . It is fair
to remember that this particularly symmetric form of the equations of classical
mechanics already appears in Lagrange’s works.

Exercise. Notice that Hamilton’s equations are equivalent to the identity

iX∗Hω = −∂H, where ∂H =
∂H

∂p
· dp+

∂H

∂q
· dq = dH − ∂H

∂t
dt.

Alternatively, deduce this directly from the identity iΞ∗Hd$H = 0.

The example of classical mechanics. The Lagrangian is the difference

L(q, q̇) =
1

2
q̇ ·G(q)q̇ − V (q) =

1

2
g(q)(q̇, q̇)− V (q)

between kinetic and potential energy. The kinetic energy is defined by a Rieman-
nian metric g on M , that is for each q a positive definite quadratic form g(q),
represented by a symmetric matrix G(q). When there is no potential V , the
extremals are the geodesics of the metric. The Legendre transform p = G(q)q̇
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defines the conjugate momenta (the impulsions) pi of the configuration variables

qi, the
∂L

∂qi
are the forces and the Hamiltonian is total energy, i.e. the sum of

kinetic and potential energies

H(q, p) =
1

2
q̇ ·G(q)q̇ + V (q) =

1

2
p ·G(q)−1p+ V (q).

Legendre transform in the convex case: Young-Fenchel inequality.
It follows from Hamilton’s equations that the Legendre transform L 7→ H is
involutive :

H(q, p, t) = p · q̇ − L(q, q̇, t), p =
∂L

∂q̇
(q, q̇, t),

L(q, q̇, t) = p · q̇ −H(q, p, t), q̇ =
∂H

∂p
(q, p, t).

This symmetry makes it natural to write the correspondance L ↔ H in the
following form, where the variables (q, t) play the role of mere parameters :

p · q̇ = L(q, q̇, t) +H(q, p, t).

The convexity of q̇ 7→ L(q, q̇, t) is equivalent to that of p 7→ H(q, p, t) and if a
function satisfies the general convexity hypotheses, so does its transform.

Theorem 8 (Young-Fenchel inequality) For all q, t, q̇, p, the following holds :

p · q̇ ≤ L(q, q̇, t) +H(q, p, t),

with equality if and only if p =
∂L

∂q̇
(q, q̇, t).

Figure 2.5 illustrates in dimension 1 this variational definition of the Legendre
transform. One also reads on this figure the interpretation of the transform as
the passage from a punctual to a tangential equation.

Figure 2.5

Finally, from Lemmas 2 and 7 one deduces the

21



Theorem 9 (Hamilton’s variational principle) Given a Hamiltonian H :
T ∗M ×R→ R, the (unparametrized) integral curves of the vector field Ξ∗H , i.e.
the graphs of solutions of X∗H , are the extremals of the Hamilton’s action

H =

∫
Γ

$∗H

within the set of oriented 1-dimensional submanifols Γ of T ∗M × R which join
the subspaces π−1(q0)×{t0} and π−1(q1)×{t1}, where π is the natural projection
of T ∗M on M (i.e. the projection (p, q) 7→ q).

Remarks. 1) One can show directly the corollary by writing Euler-Lagrange
equations of the Lagrangien L sur T (T ∗Ω)× R defined by

L(p, q, ṗ, q̇, t) = p · q̇ −H(p, q, t).

2) When H = p · q̇−L is the Legendre transform of a regular Lagrangian L, the
integral

∫
Γ
p · dq −Hdt on the graph Γ of the solution [a, b] 3 t →

(
p(t), q(t)

)
of Hamilton’s equations coincide with the action

∫ b
a
Ldt of the solution [a, b] 3

t → q(t) of the Euler-Lagrange equations of L. Hence the extremals of both
integrals are the same, in spite of the fact that the space of paths at stake
in Hamilton’s principle is much larger than the set of paths in Ω (no a priori
relation is assumed betwee p(t) and q(t)); the explanation is that, q, q̇, t being

given, p · q̇ −H is an extremum implies q̇ =
∂H

∂p
, i.e. p =

∂L

∂q̇
.

2.3 Time and energy as conjugate variables.

Let T ∗M → R be an autonomous (i.e. independent of time) Hamiltonian. As
dH ·X∗H = −ω(X∗H , X

∗
H) = 0, which in coordinates becomes

d/dt
(
H
(
p(t), q(t)

))
= −q̇ · ṗ+ ṗ · q̇ = 0,

the vector field X∗H defined by H on T ∗M leaves the function H invariant. This
is the energy conservation we have already met in the first chapter when looking
at the internal variations. Hence the integral curves of X∗H are contained in the
level hypersurfaces of H

Σh = H−1(h) = {α ∈ T ∗M, H(α) = h} .

If h is a regular value2 of H, we shall denote by X∗H,h the restriction of X∗H to

Σh. Note that in this case gradH, and hence also X∗H , does not vanish on Σh.

Consider the Liouville 1-form λ which in coordinates is λ = p ·dq =
∑n
i=1 pidqi,

and let ih be the canonical injection of Σh in T ∗M . The 1-form λh = i∗hλ
induced by λ on Σh plays with respect to X∗H,h the part played by $∗H with
respect to Ξ∗H = (X∗H , 1) (compare the following Lemma to Lemma 7):

2i.e. if the derivative dH does not vanish anywhere on Σh which, thanks to the implicit
function theorem, implies that Σh is a 2n−1-dimensional submanifold of T ∗M . Sard’s theorem
asserts that “almost every” energy level is regular.
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Lemma 10 In a regular level Σh of H, the vector field X∗H,h generates the field
of kernels of the 2-form ωh = i∗hω = dλh.

Proof. Let α ∈ Σh; the kernel of ωh(α) is the set of X in TαΣh such that

∀Y ∈ TαΣh, ωh(α)(X,Y ) = 0.

Hence it is the set of X ∈ TαΣh such that

dH(α)(Y ) = 0 =⇒ ω(α)(X,Y ) = 0.

The regularity of Σh and the non degeneracy of ω imply that, when considered
as equations in TαT

∗M , each side of the implication defines a hyperplane. Hence
the implication is equivalent to the existence of a non zero constant k such that
iXω(α)+kdH(α) = 0. But, as H is autonomous, we have iX∗Hω = −dH. Hence
the vector X − kX∗H,h(α), which belongs to the kernel of the non degenerate
2-form ω(α), is equal to 0.

In the same way as, thanks to lemma 2, the property that Ξ∗H generates the
kernel of d$∗H is equivalent to the Hamilton variational principle (theorem 9),
which holds as well for non autonomous Hamiltonians, lemma 10 is equivalent
to a variational principle which holds only for autonomous Hamiltonians:

Theorem 11 (Maupertuis’ variational principle) Let H(p, q) be a time in-
dependent Hamiltonian. The solutions of Hamilton’s equations which, possibly
after reparametriation, are contained in a regular energy level Σh, are the ex-
tremals of the integral Mh(Γ) =

∫
Γ
λh within the set of 1-dimensional ori-

ented submanifolds of Σh joining two subspaces of the form Σh ∩ {q = q0} and
Σh ∩ {q = q1}).

Finally, one deduces from lemma 7 that λh is an integral invariant of X∗H,h ,
that is:

Theorem 12 (Poincaré integral invariant, fixed energy version) If C0 and
C1 are two oriented loops in Σh such that C1 − C0 is the oriented boundary of
a cylinder C formed by integral segments of X∗H,h, one has∫

C0

λh =

∫
C1

λh.

Moreover, the direction (but not the length) of X∗H,h is completely determined
by this property .

Of course, the conclusion of Theorem 12 still holds, even for a non autonomous
Hamiltonian, if instead of fixing the energy we fix the time:

Theorem 13 (Poincaré integral invariant, fixed time version) Let H :
T ∗M × R→ R be a Hamiltonian which may depend on time. If C0 and C1 are
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two oriented loops in T ∗M such that C1 be the image of C0 under the flow ϕt1t0
of X∗H for some couple of times (t0, t1), one has∫

C0

λ =

∫
C1

λ,

where λ is the Liouville canonical 1-form on T ∗M .

This duality between time and energy is particularly in evidence on the identity

d(p · dq −H(p, q, t)dt) = d(p · dq + tdH(p, q, t)).

Back to geodesics: the Jacobi metric. One of the best known applications
of the “elimination of time” effected by the Maupertuis principle is the reduc-
tion, due to Jacobi, of problems of classical mechanics to problems of geodesics.
This is the first apparition, (true, with fixed energy), of the possibility to re-
place forces by geometric properties of space, an idea which will lead to general
relativity. Let (M, g) be a Riemannian manifold and L : TM → R a classical
Lagrangian

L(ξ) =
1

2
||ξ||2g − V (π(ξ)), (π : TM →M canonical projection),

to which the Legendre transform associates (exercise !) the Hamiltonien

H(α) =
1

2
||α||2g−1 + V (π̃(α)), (π̃ : T ∗M →M, canonical projectione),

In local coordinates,

L(q, q̇) =
1

2
q̇ ·G(q)q̇ − V (q) et H(p, q) =

1

2
p ·G−1(q)p+ V (q).

Leit h be a regular value of H; one deduces from Maupertuis 11 that those
extremals c(t) of

∫
Ldt whose energy is h, i.e. those which satisfy

||ċ(t)||2g(c(t)) = 2
(
h− V (c(t))

)
, (?h)

are, up to reparametrization, the extremals of
∫
||ċ(t)||2g(c(t)) dt within the set

of parametrized curves t 7→ c(t) in M joining two given points m0 and m1 and
satisfying (?h). Thanks to remark 2 at the end of section 2.2, one can indeed
restrict to curves in Σh which are images by the Legendre transformation of
curves of the form (c(t), ċ(t)).

Theorem 14 The extremals with energy h of a classical Lagrangian L(q, q̇) =
1
2 ||q̇||

2
g − V (q) may be defined, up to parametrization, as the extremals of the

length integral
∫
||q̇||g̃ dt for the Riemannian metric g̃ which is defined on Mh =

{m ∈M, h− V (m) > 0} by g̃(m) = 2
(
h− V (m)

)
g(m).
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Proof. It is enough to notice that, on the set of curves which satisfy (?h), one
has ∫

||ċ(t)||2g(c(t)) dt =

∫
||ċ(t)||g̃(c(t)) dt,

and that the integral on the right depends only on the image and not on the
parametrization t 7→ c(t) of the curve. This allows forgetting the initial con-
straint on parametrization.
Remarques. 1) When the potential V vanishes and h > 0, the metric g̃
coincides with g up to a multiplicative constant; this proves that the geodesics
of a metric are, up to parametrization, the extremals of the length.

2) The domains Mh to which the extremals with energy h are confined, are called
Hill’s regions (see figure 6.5) by reference to the pionneering works of George
William Hill on the restricted 3-body problem at the end of 19th century.

2.4 From time-dependent to time-independent: extension
of the phase space

When proving that the conservation of energy for time autonomous Lagrangians
is a consequence of the extremality under the sole internal variations (i.e. changes
of the time parametrization), we had a first glance at the duality between time
and energy. This duality was also at stake in theorems 12 and 13. We now make
this idea more precise: a time-dependent system can always be embedded into a
time-independent one at the expense of adding dimensions and loosing track of
time origin. Indeed, the vector field X∗K =

(
−∂H∂q ,−

∂H
∂t ,

∂H
∂p , 1

)
on T ∗(M × R)

corresponding to the extended Hamiltonian

K(p,E, q, τ) = E +H(p, q, τ)

restricts to Ξ∗H =
(
−∂H∂q ,

∂H
∂p , 1

)
when identifying with T ∗M ×R, by the projec-

tion forgetting E, the energy hypersurface K−1(0) ⊂ T ∗(M × R) ≡ T ∗M × R2

(see figure 2.6).

Figure 2.6

In the same way, the Liouville form p · dq + E · dt on T ∗(M × R) becomes the
Poincaré Cartan integral invariant $H on T ∗M × R.
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This extension may be useful even if H does not depend on time: as we shall
stress in the next section, the geometry of the energy hypersurface K−1(0)
determines the direction of the restriction of the vector field XK , that is of
Ξ∗H = (X∗H , 1); hence it determines completely the vector fieldX∗H . Note however
that K does not satisfy the Legendre condition.

Conversely, suppose that an autonomous Hamiltonian H(p, q) satisfies ∂H
∂pn
6= 0

at some point of Σh. The implicit function theorem asserts that, in a neighbor-
hood of such a point, Σh admits an equation of the form

pn +K(p̃, q̃, qn) = 0,

where (p̃, q̃) = (p1, · · · , pn−1, q1, · · · , qn−1). Hence, locally, one can consider Σh
as the product by R of the “reduced” phase space (p̃, q̃) and K(p̃, q̃, qn) as a
Hamiltonian on this space depending on the new time qn. This gives a direct
relation between the variational principles. of Hamilton and Maupertuis.

Exercise. Compare the flow of this non autonomous Hamiltonian with the
projection on the space (p̃, q̃) of the flow of the restriction X∗H,h of X∗H to Σh.

Note that, as dqn
dt = ∂H

∂pn
6= 0, the two times are comparable.

3 Symplectic manifolds and Hamiltonian vector
fields

3.1 Definition and examples

Definition 15 Let V be a manifold (necessarily of even dimension 2n). A sym-
plectic form on V is a differential 2-form ω which is closed (dω = 0) and regular
(the biilinear form on TzV it defines at each point z of V is non-degenerate,
which means that the correspondence X 7→ (Y 7→ ω(X,Y )) is an isomorphism
from TzV onto T ∗z V ). The pair (V, ω) is called a symplectic manifold. If more-
over the 2-form ω is a coboundary, that is if there exists a (Liouville) 1-form λ
such that ω = dλ, one says that (V, ω) is an exact symplectic manifold.

The typical example is the standard symplectic form ω = dλ = dp ∧ dq on a
cotangent space T ∗M , where λ = p · dq is the Liouville form (which can be
defined intrinsically). Darboux’ theorem aserts that in the neigborhood of any
point of V there exist local coodinates (p, q) in which the symplectic form is
dp∧ dq. Hence, in opposition to the case of Riemannian metrics, a sypmplectic
form has no local invariant.

A fonction H : V × R→ R is called a it Hamiltonian ;

Definition 16 The symplectic gradient gradωh of h : M → R is uniquely
defined by the identity

iX∗hω = −dh,
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where ω is the symplectic form. It is also called the Hamiltonian vector field
defined by h. A time dependent Hamiltonian H : M×R→ R, must be considered
as a family, parametrized by t of functions x 7→ H(t, x), which leads to a time-
dependent vector field X∗H , uniquely defined by the identity

iX∗Hω = −∂H := −dH +
∂H

∂t
dt.

The name symplectic gradient is of course given by analogy with the gradient of
a Riemannian metric g on M , the only difference being that ω is antisymmetric
while g is symmetric. If dimV = 2n, one speaks of a Hamiltonian system with
n degrees of freedom (resp. n+ 1

2 if H depends on time).

2.3.2 Examples : 1) Symplectic product and hermitian product : the
standard symplectic form on Cn. Identify R2n to Cn by the mapping

(p, q) = (p1, · · · , pn, q1, · · · , qn) 7→ ξ = (p1 + iq1, · · · , pn + iqn).

The euclidean scalar product g((p′, q′), (p′′, q′′)) =
∑
j(p
′
jp
′′
j + q′jq

′′
j ) and the

standard symplectic form ω((p′, q′), (p′′, q′′)) =
∑
j(p
′
jq
′′
j −q′jp′′j ) on T ∗Rn ≡ R2n

become respectively the real and imaginary parts of the canonical hermitian
product:

(ξ1, ξ2, . . . , ξn) · (η1, η2, . . . , ηn) =

n∑
j=1

ξ̄jηj = g(ξ, η) + iω(ξ, η).

In particular, ω(ξ, η) = g(iξ, η). Considered as an operator in R2n, the multi-
plication by i is represented in the coordinates (p, q) by a matrix J such that
J2 = −Id and the above formulæ become

∀X,Y ∈ R2n, ω(X,Y ) = g(JX, Y ), where J =

(
0 −1
1 0

)
.

2) Vortices. As an illustration, let us write the classical equations of n vortices
in the plane, that is the discretization due to Helmholtz of the Euler equations of
the hydrodynamics (see the book by V.I. Arnold and B.A. Khesin, Topological
Methods in Hydrodynamics, Springer 1998):

kiẋi = −∂H
∂yi

, kiẏi =
∂H

∂xi
, H =

1

π

∑
i<j

kikj log rij ,

where Rij =
√

(xi − xj)2 + (yi − yj)2 is the euclidean distance between the vor-
tices i and j. The vector field is the symplectic gradient of H for the symplectic
form $ =

∑
i kidxi ∧ dyi. Here, the symplectic structure of R2 does not come

from the identification with the cotangent bundle cotangent of R, but from the
identification to C (different for each vortex) of the plane R2 where the motion
take place. This is a good example of a Hamiltonian system which does not
come as the Legendre transform of a Lagrangian.
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3.2 Three fundamental properties of a Hamiltonian flow
on a symplectic manifold

The following properties of the flow ϕt1t0 (resp. ϕt if H is autonomous) of a
Hamiltonian vector field X∗H are formal consequences of its expression as a
symplectic gradient. The generalize to arbitrary symplectic manifolds what we
already knew in the case of a cotangent bundle.

WARNING: the last two properties hold only for autonomous Hamiltonians.

1) Preservation of the symplectic form. For any times t0, t1 such that ϕt1t0
is defined, one has

(ϕt1t0)∗ω = ω.

If (V, ω) = (T ∗M,dλ), this was shown as a consequence of the existence of
the integral invariant. In the general case, this is implied by the condition
dω = 0. Indeed, using Cartan formula LX = iXd + diX for the Lie derivative,
one computes

LX∗Hω = iX∗Hdω + diX∗Hω = −∂∂H = 0.

2) Preservation of the energy in the autonomous case. Already proved
twice for the Legendre tranforms of regular autonomous Lagrangians, it is in-
tuitive on figure 13. Formally, it results from the identity

LX∗HH = dH(X∗H) = ω(X∗H , X
∗
H) = 0.

3) Characteristic foliation of a hypersurface. An important feature of
autonomous Hamiltonian systems is that, up to the parametrization, integral
curves of the flow of X∗H are completely determined by the sole geometry of the
level hypersurfaces of H : this is clear on figure 3.1 : the direction of gradωH
depends only on the direction of gradH and not on its length or orientation.

Definition 17 Let (V, ω) be a symplectic manifold, Σ a regular hypersurface of
V . The characteristic foliation of Σ is the dimension one foliation generated by
the kernel of the restriction to Σ of the symplectic 2-form ω.

Figure 3.1 (H and K are regular equations of H−1(h) = K−1(k) at x)
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In other words, for any regular equation H = 0 of Σ in the neighborhood of the
point z, the leaf through z coincides with the integral curve through z of the
Hamiltonian vector field grad$H.

3.3 Symplectic diffeomorphisms

An advantage of the Hamiltonian setting on the Lagrangian one is a greater
flexibility of the changes of coordinates which do not spoil the canonical form
of the equations.

Definition 18 In a symplectic manifold (V, ω), one calls symplectic or canon-
ical the diffeomorphisms (possibly local) f : V → V such that f∗ω = ω. More
generally, a difféomorphism f from a symplectic manifold (V, ω) to another one
(V ′, ω′) is said symplectic if f∗ω′ = ω.

In (T ∗Rn, dp ∧ dq), if f(p1, · · · pn, q1, · · · qn) = (α1, · · ·αn, β1, · · ·βn), the condi-
tion becomes

n∑
i=1

dαi ∧ dβi =

n∑
i=1

dpi ∧ dqi.

The sum of the oriented areas of the projections of a domain on the 2-planes
(pi, qi) is preserved; in particular, the symplectic diffeomorphisms of T ∗Rn ≡
R2n preserve the 2n-form ωn, hence also the volume dp1∧· · ·∧dpn∧dq1 · · ·∧ dqn
and the orientation (in mechanics, it is the classical Liouville theorem).

Exercices. 1) The symplectic group. Check that a linear isomorphism of
R2n is symplectic (for the standard symplectic form) if and only if the corre-
sponding matrix A in the canonical basis satisfies

trAJA = J, où J =

(
0 −1
1 0

)
.

Check that the inverse and the transpose of a symplectic matrix are symplectic
(for the transpose, there is implicitly the identification of (R2n)∗ t̀o R2n given by
the canonical euclidean structure and the fact that the symplectic structure on
(R2n)∗ is given by the matrix J−1 = −J). The subgroup of GL(2n,R) formed
by the symplectic isomorphisms is called the symplectic group; it is denoted
Sp(2n). Notice the analogy with the orthogonal group O(2n), where J (which
defines the multiplication by i in Cn = R2n) is replaced by the Identity I.
Finally, deduce from what was said above on the Hermitian product that the
following characterization of the unitary group U(n) :

U(n) = O(2n) ∩ Sp(2n).

2) Check that ϕ is a symplectic diffeorphism of R2n (for the standard symplectic
form) if and only if, for all x = (p, q), its derivative dϕ(x) belongs to Sp(2n).

3) Cotangent maps. Let ϕ : M → N be a diffeomorpism and let Tϕ and T ∗ϕ
be its tangent and cotangent maps: if ξ ∈ TxM and α ∈ T ∗xM ,

Tϕ(ξ) = dϕ(x)ξ, T ∗ϕ(α) = α ◦ dϕ(x)−1.
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Check that T ∗ϕ is a symplectic diffeomorphism if T ∗M and T ∗N are endowed
xith their natural symplectic forms ω = dλ and ω′ = dλ′. Check that, in fact,
(T ∗ϕ)∗λ′ = λ.

Applying this to the linear case, one gets the simplest class of elements of Sp(2n),
namely, the matrices of the form

A =

[
B 0
0 trB−1

]
, where B ∈ GLn(R).

Show that if L : TM → R is a regular Lagrangian, the direct image by Tf of
the Euler-Lagrange equations associated to L are the Euler-Lagrange equations
associated to L′ = L ◦ (Tf)−1 : one shall show that if Λ : TM → T ∗M and
Λ′ : TN → T ∗N are the Legendre diffeomorphisms, the following diagram is
commutative:

TM
Tϕ−−−−→ TNyΛ

yΛ′

T ∗M
T∗ϕ−−−−→ T ∗M ′

4) Transformation of a Hamiltonian vector field by a symplectic dif-
feomorphism. Let Φ : (V1, ω1) → (V2, ω2) be a symplectic diffeomorphism.
Show that if H2 : V2 → R is a Hamiltonian and H1 = H2 ◦ Φ : V1 → R is its
inverse image by Φ, one has:

gradω2
H2 = Φ∗gradω1

H1.

In particular, If Φ(p, q) = (a, b) is symplectic, that is if dp ∧ dq = da ∧ db (or
more correctly Φ∗(ω) = ω), the direct image of the Hamiltonian vector field X∗H
is the Hamiltonian vector field X∗H◦Φ−1 .

5) Generating functions. Here is a natural way of constructing symplectic

diffeomorphisms: Let S(a, q) : Rn × Rn · · · → R be such that ∂2S
∂a∂q (a, q) is

invertible on its domain of definition. Show that the formulæ

p =
∂S

∂q
(a, q), b =

∂S

∂a
(a, q)

define a symplectic diffeomorphism

Φ : O1 3 (p, q) 7→ (a, b) ∈ O2

from an open set of R2n onto another one (both endowed with their canonical
symplectic form).

6) Symplectic maps. Show that if f : (V, ω)→ (V ′, ω′) is symplectic, i.e. such
that f∗ω′ = ωis symplectic, it is necessarily an immersion (i.e. its derivative at
each point is injective). Indication : show that if a tangent vector belongs to
the kernel of df(x), it must belong to the kernel of ω(x).
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3.4 Lagrangian submanifolds and Hamilton-Jacobi

In the exemples of geodesic flows on the 2-torus which we studied in sections 1.4
and 1.5, most of the phase space T ∗T2 is foliated by invariant tori on which the
flow of X∗H is a flow of translations in well chosen coordinates. This was obvious
for the flat torus and a consequence of the invariance under rotation for the torus
of revolution. The existence of such a foliation is a characteristic feature of the
so-called completely integrable autonomous Hamiltonian systems. It follows from
Lemma 10 that these invariant tori are very special: the symplectic 2-form ω
vanishes identically on them. Such submanifolds play a fundamental role in
higher dimension

Notation. If j : V → M is the canonical inclusion of a submanifold and ω is
a differential form on M , the pull-back j∗ω will be called the restriction of ω to
V and denoted ω|V .

Definition 19 A submanifold V of a symplectic manifold (M,ω) is called isotropic
if the restriction ω|V of the symplectic form is identically zero.

Lemma 20 Let (M,ω = dλ) be an exact symplectic manifold. If the restriction
of the flow of X∗H to an invariant torus T is conjugate to a flow of translations
with dense orbits, T is isotropic.

Proof. If j∗ω =
∑
i<j aij(u1, · · · , uk)dui ∧ duj in coordinates u1, · · · , uk on

T such that the flow of X∗H becomes a flow of translations Φt(u) = u + tv,
the fact that Φ∗ω = ω implies that the functions aij are constant along the
integral curves contained in T (this would not be the case if dΦt(u) was not the
Identity). As these integral curves are dense, the aij are constant, hence equal
to 0 because j∗ω = d(j∗λ) is a coboundary.

Notice that in the completely integrable cases that we studied above, an easy
argument of continuity implies that all invariant tori (and not only the ones
with dense integral curves), and also the stable = unstable invariant manifolds
of the hyperbolic periodic solutions, share the property j∗ω = 0.

Definition 21 (Lagrangian submanifold) Let (M,ω) be a symplectic man-
ifold. The dimension of an isotropic submanifold of V is at most 1

2 dimM . If
it is equal to 1

2 dimM , the submanifold is called Lagrangian.

The bound on the dimension is an exercise in symplectic algebra : at each point
m ∈M , the bilinear form ω(m) is non degenerate, hence an isotropic subspace
(i.e. a linear subspace contained in its ω-orthogonal) is at most of dimension
1
2 dimTmM = 1

2 dimM .

If the symplectic manifold M is a cotangent bundle, that is if M = T ∗V en-
dowed with the standard symplectic form, that is the derivative of the Liou-
ville form: ω = dλ, an example of a Lagrangian submanifold is the graph
{(q, p = ds(q)), q ∈ V } of the derivative of a differentiable function s : V → R.
More generally, Lagrangian submanifolds of (T ∗V, dλ) can be thought, at least
locally, as graphs of derivatives of multiform differentiable functions.
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Remark. A Hamiltonian flow is a very particular one as it preserves the sym-
plectic 2-form ω, hence in particular the volume. Its restriction to a Lagrangian
submanifold V , on the contrary, does not satisfy any a priori constraint : every
vector field X on V is the restriction of a Hamiltonian flow defined on a neigh-
borhood of V . The simplest example is obtained when V ≡ Tn is the zero-section
p = 0 of T ∗Tn : if X(q) is vector field on V , the Hamiltonian H(p, q) = p ·X(q)
is such that the restriction of X∗H to V coincides with X (but it is not convex
in p !).

Each invariant Lagrangian submanifold that we found in the integrable examples
is contained in a single energy level. This is a consequence of the conservation
of energy when the submanifold is the closure of a single solution and the others
follow by continuity. This property has a very important converse :

Proposition 22 Let H : M → R be an autonomous Hamiltonian on the sym-
plectic manifold (M,ω). Every Lagrangian submanifold V of M contained in a
regular energy level H−1(h) is invariant under the flow of X∗H .

The proof is again an exercise in symplectic algebra : because of the maximality
of the dimension of V among isotropic submanifolds, it is enough to notice that
at each point m ∈ H−1(h), the vector X∗H(m) belongs to (in fact generates) the
kernel of i∗hω(m), where ih is the canonical injection of H−1(h) in M . Indeed,
if X∗H(m) was not contained in TmV , the linear subspace generated by X∗H(m)
and TmV would be isotropic of dimension n+ 1, a contradiction.

In case V = T ∗M is a cotangent, it is a so-called Hamilton-Jacobi equation
which expresses that the graph ds of the derivative of a differentiable function
s : M → R is contained in some energy level :

Definition 23 (Hamilton-Jacobi) The time-independent Hamilton-Jacobi
equations associated to the Hamiltonian H(p, q) are the equations of the form

H(ds(q), q) = h.

The time-dependent Hamilton-Jacobi equation associated to the Hamiltonian
H(p, q, t) is the equation

∂S

∂t
(q, t) +H

(∂S
∂q

(q, t), q, t
)

= 0.

Of course, after identification of K−1(0) with T ∗M × R, the time dependent
equation is nothing but the time-independent one, K(dS(q, t), q, t) = 0, where
K is defined by K(p,E, q, τ) = E +H(p, q, τ).

Proposition 22 is at the basis of the method of characteristics: given an au-
tonomous Hamiltonian H on a 2n-dimensional symplectic manifold V , if I ⊂
H−1(h) is an n−1 dimensional isotropic submanifold which is transverse to the
integral curves of X∗H , the union of those integral curves which meet I is a La-
grangian submanifold contained in H−1(h). In case V is a cotangent V = T ∗M ,
I can be chosen as a Cauchy datum, that is a graph over a hypersurface F ⊂M
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of the derivative ds of a differentiable function s : F → R. However, in general
only local (in time) solutions do exist. In order to obtain globally defined solu-
tions, one has to abandon differentiability and accept Lipschitz solutions. This
is the theory of shocks in scalar conservation laws or more generally the Weak
KAM theory. However, there are cases where global differentiable solutions
do exist, namely the“completely integrable” systems and their perturbations
(K.A.M. theory).

3.5 Complete integrability in T ∗Tn

All invariant tori of the geodesic flow of a flat torus are graphs of a mapping
q 7→ p(q), that is sections of the projection (p, q, ) 7→ q. For the torus of
revolution, only those not contained in the resonance zone are graphs in the
same way. The invariant manifolds of the hyperbolic periodic solutions are the
union of two pieces, each of which is a graph.

Lemma 24 If the Lagrangian submanifold L of V = T ∗Tn = (Rn)∗ × Tn is
a graph, it is the graph of a mapping of the form p = a + ds(q), where a =
(a1, · · · , an) ∈ (Rn)∗ and s : Tn → R.

The proof is an easy calculation : the graph V of the mapping q 7→ p(q) is
Lagrangian if and only if the 2-form

∑n
i=1 dp(q) ∧ dq =

∑
i,j

∂pi
∂qj

(q)dqj ∧ dqi on

Tn is identically 0. But this means that ∂pi
∂qj

(q) =
∂pj
∂qi

(q) for all i, j. This implies

that there exists a function σ : Rn → R such that for all i, pi(q) = ∂σ
∂qi

(q). Hence

there exist constants ai (the periods of σ) and a function s : Tn → R such that
for all i, pi(q) = ai + ∂s

∂qi
(q).

Corollary 25 A Lagrangian graph L contained in the energy level H−1(h) of
an autonomous Hamiltonian is of the form {(p, q), p = a + ds}, where s is a
solution of the partial differential equation H(a+ ds(q), q) = h.

According to the above Corollary, each Lagrangian graph contained in an energy
level of an autonomous Hamiltonian is the graph of the derivative of a solution
of the Hamilton-Jacobi equation associated to a Hamiltonian

Ha(p, q) = H(a+ p, q)

where a ∈ (Rn)∗ should actually be thought of as a cohomology class inH1(Tn,R).
Such a Hamiltonian is easily seen to be the Legendre transform of the Lagrangian

La(q, q̇) = L(q, q̇)− a · q̇ = L(q, q̇)−
n∑
i=1

aiq̇i,

which satisfies the same hypotheses as the original one.

Notice that, while the solutions of the Euler-Lagrange equations associated to La
are independent of a, the minimizing ones do indeed depend on a. The simplest
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example is the geodesic flow of the flat torus : adding a mass to better distinguish
between the tangent and cotangent sides, let us take L(q, q̇) = m

2 ||q̇||
2. The

Lagrangian La can be written

La(q, q̇) =
m

2
||q̇||2 − a · q̇ =

m

2
||q̇ − 1

m
a||2 − ||a||

2

2m
,

and the minimizers are immediately seen to be such that q̇ = 1
ma, that is p = a.

Let us suppose now that to each a ∈ (Rn)∗ we can associate in a differentiable
way a solution ua of the equation

H(a+ dua(q), q) = h(a),

where h is a smooth function. Setting S0(a, q) = a · q+ ua(q), this is equivalent
to

H

(
∂S0

∂q
(a, q), q

)
= h(a).

The function S0 is of course not Zn-periodic in q, that is not defined on Tn,
but its derivative is. Hence S0 can be used as the generating function of the
symplectic transformation

Φ : Rn × Tn → Rn × Tn, Φ(p, q) = (a, b),

defined by

p =
∂S0

∂q
(a, q) = a+

∂ua
∂q

(q), b =
∂S0

∂a
(a, q) = q +

∂ua
∂a

(q),

provided det
(
∂2S0

∂a∂q

)
6= 0. Indeed, dp ∧ dq + db ∧ da = d2S0 = 0, which shows

the preservation of the canonical symplectic form. In the new coordinates (a, b),
the Hamiltonian vector field X∗H becomes X∗H◦Φ−1 , that is X∗h. As h does not
depend on the variables b, Hamilton’s equations take the particularly simple
completely integrable form

dai
dt

= 0,
dbi
dt

=
dh

dai
(a),

which is similar to the one defining the geodesic flow of the flat torus.

This is not astonishing. If for each a there exists a unique solution ua which is
differentiable, the collection of the graphs of these functions defines a foliation of
the phase space by Lagrangian tori. The existence of such a foliation implies in
turn the existence of action-angle coordinates in which the flows on the invariant
tori are linear.
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4 Two degrees of freedom: surfaces of section
and return maps

4.1 Poincaré return maps

Due to its invariance under rotation, the geodesic flow of the torus of revolution
(or the one of the flat torus) admits a quotient (i. e. a direct image) on the
torus (ψ, θ); of course, such a quotient does not exist any more for the geodesic
flow of a slightly perturbed metric which is no more invariant under rotation.
What replaces the non-existing quotient is a surface of section3 analogous to
the one discovered by Poincaré in the Restricted problem of three bodies which
will be described in section 6. More precisely, the torus (ψ, θ) may be identified
to the submanifold S ⊂ T 1T2 whose equation is ϕ = 0; indeed, when restricted
to this submanifold, the quotient map (ϕ,ψ, θ) 7→ (ψ, θ) is a diffeomorphism.
If one excludes the family of periodic solutions ϕ = ϕ0, θ = π

2 modulo π, each
integral curve of the geodesic flow meets S transversally. Let γ1 and γ2 be the
two members of the above family which belong to S. On the surface S\{γ1∪γ2},
which is diffeomorphic to the disjoint union of two open annuli, one can define
a first return map (or Poincaré map) P which sends the point x on the first
point of the integral curve (described from x in the positive direction) which
belongs again to S. The mapping P is a diffeomorphism of S \ {γ1 ∪ γ2} onto
itself; iterating it can be viewed as a stroboscopy of the dynamics: its knowledge
determines the topology (but not the parametrization) of the phase portrait in
T 1T2 of the geodesic flow. This leads us to the

Definition 26 . A local surface of section at x of a vector field X is a subman-
ifold S which contains x and has the following properties:
1) It is everywhere transverse to the integral curve of X through this point;
2) There exists an open neighborhood O of x in S on which the first return map
P is defined (figure 4.1).
A global surface of section is a submanifold possibly containing a finite number of
integral curves of X and which, in the complement of these curves, is everywhere
a local surface of section

The following lemma asserts that the discrete analogue of a Hamiltonian vector
field X is a symplectic diffeomorphism:

Lemma 27 . Let (N,ω) be a symplectic manifold, H a regular function on N ,
X∗H = gradωH its symplectic gradient, X∗H,h the restriction of X∗H to the regular
energy level Σh. Let S ⊂ Σh be a local surface of section of X∗H,h, P : O → S the
corresponding first return map. The 2-form ωS induced on S by the symplectic
form ω is non-degenerate (and hence symplectic) and invariant under P .

Proof. The non-degeneracy of ωS comes from the fact that X∗H,h generates the
kernel of the form ωh induced by ω on Σh. Let ϕt denote the flow of X∗H,h; the

3Among the basic operations which can be used by the geometer, two main ones are project
and cut.
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first return map can be written P (x) = ϕt(x)(x), where x ∈ O, and t(x) > 0
are the first return time on S. As the transversality hypothesis insures the
regularity of t(x), one deduces that, if A is tangent at x to S,

dϕt(x)(x)A = dP (x)A+ αX∗H
(
P (x)

)
.

The conclusion follows from the preservation of ω by the flow ϕt and the fact
that X∗H,h belongs to the kernel of ωh.

Figure 4.1

The invariant tori become invariant curves and complete integrability corre-
sponds to the the existence of a (possibly singular) foliation of S by invariant
curves.

In the following, we give simple examples and introduce the monotone twist
maps which will be studied in section 5, postponing to section 6 the study of
the restricted problem of three bodies which is at the origin of the introduction
by Poincaré of the notion of surface of section.

Remark. Given two hypersurfaces P0 et P1 in Σh (i.e. 2n− 2 dimensional sub
manifolds of V ) which are transversal to the integral curves of the restriction
X∗H,h of X∗H to Σh in some domain of Σh, one defines the Poincaré map P :
P0 → P1 in the following way: the image of x ∈ P0 is first point of P1 which
one encounters when following the integral curve starting at x.

Exercise. Deduce from the characterization of the characteristic foliation that
ω induces on P0 and P1 symplectic forms ω0 and ω1 and that the map P is
symplectic, that is P∗ω1 = ω0.

4.2 Time periodic Hamiltonians

A particularly simple case is provided by the autonomous Hamiltonians

K(p,E, q, t) = E +H(p, q, t) : T ∗(M × T1)→ R

originating from a non-autonomous Hamiltonian H(p, q, t) : T ∗M×R×T1 → R
periodic in t. In the energy hypersurface K = 0, diffeomorphic to T ∗M×T1 (see
section 2.4), fixing t = 0 provides a natural hypersurface of section diffeomorphic
to T ∗M .
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4.3 Geodesic flows on the torus and on the sphere

The torus. In the case of a flat torus or a torus of revolution, the restriction
of the symplectic form to the torus (ψ, θ) is, up to a factor r in the second case,
the measure cos θ dθ∧dψ (exercise, check this !). The integral curves of the flow
after a quotient by SO(2) (i.e. in the torus (ψ, θ)) are defined by the equations
C(ψ, θ) = cste, where C(ψ, θ) = θ if the torus is flat, C(ψ, θ) = (1+r cosψ) cos θ
(the Clairaut integral) if the torus is a torus of revolution. It follows that the
mapping P , whose orbits are contained in the integral curves of the quotient
flow, satisfies

P (ψ, θ) = P
(
C(ψ, θ)

)
.

One says that the level curves of C are invariant curves of the mapping P . Their
existence corresponds to the complete integrability of the above geodesic flows.
Figure 4.2 shows these invariant curves in the annulus −π/2 < θ < π/2 for
the flat torus and the torus of revolution. One has represented in both cases
the image by P of the ray R with equation ψ = 0 : a “monotone twisted”
ray in the first case, more complex (non monotone) in the second one because
the geodesics close to the exterior “horizontal” periodic geodesic are focalized
beween two successive returns on the annulus of section4 (analogous to the
iterates of a monotone distortion). This torsion of the rays is related to the

non-degeneracy of the Hamiltonian and hence to the Legendre property ∂2L
∂q̇2 > 0

(see section 5.3). It corresponds to the effective variation of the “frequencies”
with the “actions”, when the energy is fixed. Such mappings were the object of
numerous studies since Poincaré and Birkhoff (see section 5);

cercle des points
fixes de P

courbes 
invariantes
de P

courbes 
invariantes 
de P

point fixe
hyperbolique
de P

point fixe
elliptique
de P

TORE PLAT                                                       TORE DE REVOLUTION

θ
θ

Figure 4.2
When going5 from the flat torus to the torus of revolution, the circle of fixed
points θ = 0 of the first return map P has blowned up into a pair elliptic-
hyperbolic of isolated fixed points: these two types of fixed points can be dis-
tinguished by the derivative of P , conjugated to a rotation in the elliptic case,

4Looking again to the end of 1.5, the reader will notice that this affirmation follows from
the inequality π

√
r(1 + r) < 2π(1 + r).

5recall, what is obvious on figure 4.2, that it is not a small perturbation.
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with two real eigenvalues λ1, λ2 such that 0 < |λ1| < 1 < |λ2| in the hyperbolic
case (the conservation of orientation and mesure cos θ dψ ∧ dθ implies moreover
the equality λ1λ2 = 1). Notice that the hyperbolic fixed point appears at the
local level as the intersection of two invariant curves, the stable manifold and
the unstable manifold, non-linear avatars of the eigenspaces of the derivative at
P , respectively associated to the eigenvalues λ1 et λ2.

WARNING. Let X be a C∞ (or analytical) vector field on the 2-torus. Sup-
pose X admits a circle of section S and that the first return map P on this
circle is conjugate to a rotation. Then, it exists global angular coordinates on
the torus such that the integral curves of X are parallel straight lines (as in the
right part of figure 1.9). But this does not mean that there exists global angular
coordinates which make X a contant vector field. Indeed, the existence of such
coordinates depends on the diophantine properties of the rotation number of P ,
that is on the way this angle is aproximated by rational multiples of 2π (see for
example the first chapter of the second volume of S. Sternberg’s book Celestial
Mechanics.

The sphere. The unit tangent bundle of the unit 2-sphere S2 ⊂ R3 can
be identified to the rotation group SO(3) by sending the unit tangent vector
Y (identified by translation to a vector in R3) at the point X ∈ S2 on the
unique rotation R ∈ SO(3) which sends the canonical basis of R3 on the triple
(X,Y,X ∧ Y ) (see the figure). It will be convenient to denote by (X,Y ) the
tangent vector at the point X ∈ S2 represented by Y .

Figure 4.3

If we first endow the sphere with the round metric, induced on the unit sphere
by the standard euclidean metric of R3, the geodesics are the great circles,
followed at constant (=1) velocity (exercise). Translating tangent vectors at
the origin, one identifies the orbit under the geodesic flow of the tangent vector
(X,Y ) ∈ T 1S2 – that is the set of tangent vectors along the intersection of the
sphere with the plane throuh the origin orthogonal to X ∧ Y – with the unit
tangent space at the point X ∧ Y .
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Figure 4.4

It follows that the map sending a tangent vector to its orbit under the geodesic
flow is isomorphic to the the projection of T 1S2 onto its base S2 Its Euler
characteristic being equal to 2, the sphere does not admit a nowhere vanishing
vector field; in particular, its tangent bundle cannot be trivial. Hence it is not
possible to find a surface of section of the geodesic flow of the round sphere (or
of an almost round one) which cuts transversally every trajectory in one point.
The Birkhof annulus of section for the restricted three-body problem described
in section 6, is obtained by blowing up two points of S2 into their orbit (see
figure 6-2)

4.4 The Poincaré normal form around an elliptic fixed
point and twist maps

Let F : (S, p)→ (S, p) be a local C∞ (or analytic) diffeomorphism of a surface S
defined in the neighborhood of a fixed point p = F (p). The fixed point is said to
be elliptic if the spectrum of the derivative dF (p) is of the form {2πiω,−2πiω}
with ω 6= ±1. This is equivalent to the existence of a linear conjugation of dF (p)
with the rotation of angle 2πω. Hence, after choosing good coordinates, one can
suppose that p = 0 and that F : (C, 0)→ (C, 0) is such that

F (ζ) = λζ +O(|ζ|2), with λ = e2πiω.

In other words, F is a perturbation of a rotation.6 Now, a rotation preserves
each circle centered at the origin. This is a very strong property, very likely
to be destroyed by the non-linear terms in the Taylor expansion of F . Nev-
ertheless, reality is subtler and the study of the fate of these invariant circles
is the starting point of two famous theories which correspond roughly to the
dichotomy between dissipative and conservative dynamics (see [C3]):

1) Andronov-Hopf-Neimark-Sacker bifurcation theory which analyzes what hap-

6Beware that the notation F (ζ) does not mean that F is complex analytic, its expression
depends on ζ and ζ
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pens when one considers a generic7 diffeomorphism F with an elliptic fixed point
at 0. The local behaviour of F itself is quite dull: indeed, the radial behaviour
of the nonlinear terms turns the fixed point into an attractor or a repulsor and
no other invariant object persists in its neighborhood. It is only when consider-
ing “generic” 1-parameter families Fµ of local diffeomorphisms stemming from
F0 = F that the whole richness of the dynamics is regained: each small enough
circle invariant under the rotation dF (0) becomes a normally hyperbolic8 closed
curve invariant under some Fµ.

2) Kolmogorov-Arnold-Moser (K.A.M.) theory which analyzes the case when F
is area preserving, a hypothesis which, as we have seen, is natural for diffeo-
morphisms with a mechanical origin or more generally a Hamiltonian origin.
In this case, it is the angular behaviour of the non-linear terms which plays
the key part, the result being that “many” of the circles invariant under the
rotation dF (0) persist in the form of closed curves invariant under the action
of F itself. Moreover the restriction of F to such an invariant closed curve is
smoothly conjugated to a rotation whose angle is of the form 2πα with α not
rational and even “far from the rationals” in a precise sense.

The first insight, which goes back to Poincaré’s thesis in 1879, is the following:
being a rotation, the derivative of F commutes with the whole group SO(2)
of rotations. This is shown to imply that, provided some conditions on ω are
satisfied, a high order approximation of F is locally invariant by an action of
SO(2) close to the standard one. Equivalently, one proves the existence of
local coordinates which reveal the approximate geometry of the map, in a spirit
similar to the Jordan form of a matrix:

Theorem 28 If λ = e2πiω is such that λq 6= 1 for all integers q ∈ N such that
q ≤ 2n+ 2, there exists a local diffeomorphism

H : (C, 0)→ (C, 0), ζ 7→ z = H(ζ) = ζ +O(|ζ|2)

such that

H◦F◦H−1(z) = N(z)+O(|z|2n+2), where N(z) = z
(
1 + f(|z|2)

)
e2πi(ω+g(|z|2)),

with f and g real polynomials of degree n such that f(0) = g(0) = 0. If moreover
λ2n+3 6= 1, one can achieve a rest which is O(|z|2n+3).

The so-called normal form N , is characterized by the fact that it commutes
with the whole group SO(2) of rotations:

∀α,N(e2πiαz) = e2πiαN(z).

7We shall not give a formal definition of this word; it means essentially that what is de-
scribed is the general situation and that only special hypotheses could prevent the description
to be correct.

8Roughly speaking this mean that any attraction or repulsion normal to the curve under
the iterates of Fµ dominates any attraction or repulsion inside the curve; this condition insures
the robustness of the curve
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Proof. Let us start with a local diffeomorphism of degree 2,

H2 : (C, 0)→ (C, 0), z = H2(ζ) = ζ +
∑
i+j=2

γijζ
iζ
j
.

The direct computation of H2 ◦ F ◦ H−1
2 is illustrated on the diagram below:

Supposing that F (ζ) = λζ +
∑
i+j=2 αijζ

iζ
j

+O(|ζ|3), we get

H2 ◦ F ◦H−1
2 (z) = λz +

∑
i+j=2

(
αij + (λiλ

j − λ)γij

)
zizj +O(|z|3).

Hence, if no resonance relation of the form λiλ
j−λ = 0 is satisfied with indices

i, j such that i + j = 2, that is if λ3 6= 1 (otherwise λ
2 − λ = 0), the choice of

γij = −(λiλ
j − λ)−1αij kills all degree 2 terms in the Taylor expansion of the

transformed map H2 ◦ F ◦H−1
2 .

If one tries in the same way to simplify the terms of degree 3 in the Taylor
expansion of H2 ◦ F ◦H−1

2 , one stumbles upon an unavoidable resonance

λ2λ− λ = 0

which merely reflects that |λ| = 1. Hence , if no other resonance of order 3

exists, which amounts to saying that λ4 6= 1 (otherwise λ
3 − λ = 0), a local

diffeomorphism H3 of the form H3(z) = z +
∑
i+j=3 γijz

izj can be found such

that9

H3 ◦H2 ◦ F ◦H−1
2 ◦H−1

3 (z) = λz + c1z|z|2 +O(|z|4).

Now, if λq 6= 1 for all q ≤ 2n+ 3, one finds by induction a local diffeomorphism
H = H2n+2 ◦H2n+1 ◦H3 ◦H2 tangent to Id at 0 such that

H ◦ F ◦H−1(z) = λz +

n∑
k=1

ckz|z|2k +O(|z|2n+3).

9in order to avoid too cumbersome notations we still call z the transformed coordinate
H3(z).
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If λ2n+3 = 1, there is possibly a monomial γz2n+2 which cannot be canceled.
Finally, chosing polar coordinates, one writes H ◦ F ◦H−1 as in the conclusion
of the theorem.

Remark. Resonances of the form λq = 1 for 1 ≤ q ≤ 4 are called strong
resonances. They are characterized by the fact that the resonant monomial
zq−1 is of smaller or comparable order to the first unvoidable resonant monomial
z|z|2 and hence could play a role in the geometry of the normal form N which
could become invariant only by rotations by an angle multiple of 2π/q. In the
sequel, the hypotheses always exclude strong resonances.

Theorem 28 allows us to suppose from the start that local coordinates z have
been chosen so that F is in the form given, by Theorem 1. In other words, from
now on we shall write F (z) instead of H ◦ F ◦H−1(z).
We now suppose that, in addition to satisfying λq 6= 1 for all integers 1 ≤ q ≤ 4,
F is area preserving. It follows that the radial component f of the normal form
N vanishes identically and one can show that it is possible to choose H area
preserving. Hence, one is reduced to the study in the neighborhood of its elliptic
fixed point 0 of an area preserving diffeomorphism of C, 0 of the form

F (z) = N(z) +O(|z|4), N(z) = ze2πi(ω+b1|z|2).

The normal form N is called a truncated Birkhoff normal form. Dynamically, it
is an integrable monotone twist mapping: as well as the rotation dF (0), it leaves
invariant each circle Cr centered at 0 but the angle of rotation 2π(ω + b1r

2) on
Cr varies now monotonically with the radius r of this circle

Poincaré, while studying the three body problem, became aware of a funda-
mental difference between the invariant circles on which N induces a periodic
(ω + b1r

2 rational) or non periodic (ω + b1r
2 irrrational) rotation: in the first

case (angle 2πω = 2πp/q) the invariant circle is simply the union of a continous
family of q-periodic points z (i.e. of points z such that Nq(z) = z); in conse-
quence, a small perturbation should in general break such a circle, with only a
finite number of periodic points surviving the perturbation. On the other hand,
if ω is irrational, the invariant circle being the closure ∪n≥0Nn(z) of an orbit
has a dynamical origin and hence has more chance to resist a perturbation. In
the first volume of his famous book The New Methods of Celestial Mechanics,
Poincaré even ventured to write that some arithmetic condition on ω could per-
haps grant resistance to perturbations of such an invariant circle but that he
considered such a possibility as quite improbable.

Figure 4.5. Perturbation of a monotone twist

42



Nevertheless, after the pioneering work of Kolmogorov in 1954, the so-called
K.A.M. theory (from the names of Kolmogorov, Arnold and Moser) showed that
indeed, what Poincaré deemed improbable was in fact a dominant phenomenon.
In the present case, the pertinent statement is the following

Theorem 29 (Moser 1962) Given an area preserving diffeomorphism F as
above, given C > 0 and β > 0, there exists ε(C, β) > 0 such that each invariant
circle Cr0 of the normal form N such that its rotation angle 2πωr0 = 2π(ω+b1r

2
0)

satisfies the diophantine condition

∀ p
q
∈ Q,

∣∣∣∣ωr0 − p

q

∣∣∣∣ ≥ C|ωr0 − ω|
|q|2+β

and |ωr0 − ω| < ε(C, β)

will give rise to a smooth (resp. analytic) closed curve Γr0 invariant under F
and such that the restriction F |Γr0

of F is smoothly conjugate to the rotation of
angle 2πωr0 .

This theorem will be studied in the course by Bassam Fayad. In the next section,
we shall address the problem of periodic points.

5 Monotone twists, periodic orbits and Mather
sets

In this last part, we prove the existence of Birkhoff orbits and as a consequence
the existence of Aubry-Mather invariant sets for any monotone area preserving
twist map of the annulus. This generalizes Birkhoff results on the billard map
(see [C1] section 1.4, figure 3). An important generalization to higher dimensions
exists : this is the so-called Weak KAM theory.

5.1 Ordered invariant sets and Lipschitz estimates

Let A be the closed annulus T1 × [0, 1] (resp. the open cylinder T1 × R). Let
F = (F 1, F 2) : A → A be an orientation preserving Ck-diffeomorphism with
k ≥ 1. We call (x ∈ T1, y ∈ R) the natural coordinates in A. We shall note
F = (F1, F2) a lift of F to the universal covering A = R× [0, 1] (resp. R2) of A.

Definition 30 The map F is said to be a positive monotone twist map if there

exists a constant a > 0 such that both ∂F1

∂y and and −∂(F−1)1
∂y are bounded

below by a. If moreover F preserves the standard Lebesgue measure dxdy (or
more generally a measure which weights positively any open set) one says it is
conservative.
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Figure 5.1

A simple example is

F : A→ A, F (x, y) = (x+ y, y).

Figure 5.2

Another simple example is

F (x, y) = Rp/q ◦ ϕt = ϕt ◦Rp/q,

where Rp/q(x, y) = (x + p/q, y) and ϕt is the flow at a small positive time t of
the pendulum-type differential equation

ẍ+ ω2 sin(2πqx).

The figure below, which illustrates the case p = 2, q = 3, features the level

curves of the conserved “energy” H(x, y) = 1
2y

2− ω2

2πq cos(2πqx). To the singular
points of H correspond two isolated untertwined periodic orbits of period 3 and
rotation number p/q = 2/3, one hyperbolic, {z0, F (z0), F 2(z0)}, corresponding
to an unstable equilibrium of the pendulum, and one elliptic, {z1, F (z1), F 2(z1)},
corresponding to a stable equilibrium of the pendulum.

Figure 5.3
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In what follows, periodic orbits which are a natural generalization of the “hyper-
bolic” one will be obtained for a general conservative twist map of the annulus
as minima of a certain functional. Generalizations of the “elliptic” one can also
be obtained as minimax. Such ideas go back to Birkhoff’s works on billards
and were developped by Aubry and Le Daeron, Mather and Katok. We shall
follow the simple proof given by Katok in [K], which works with a slightly more
general definition of the word “conservative” ; indeed, it will be sufficient to
suppose that F preserves a measure which is positive on open subsets.
The following definition, in which we follow [K], is directly inspired by this last
example (just label the hyperbolic (resp. elliptic) points in natural order):

Definition 31 Let p, q be relatively prime integers. A Birkhoff point of type
(p, q) is a point z0 = (x0, y0) in A whose orbit can be labeled in the following
way: there is a sequence zn = (xn, yn), n ∈ Z, in A, whose projection xn, n ∈ Z,
on R is strictly monotone and which satisfies

zn+p = F (zn), zn+q = zn + (1, 0).

This implies that the projection z0 of z0 on the annulus A is a periodic point
with rotation number p/q, that no two points of its orbits coincide and that
they are ordered as the points in the orbit of the rotation (x, y) 7→ (x+ p/q, y).
Such an orbit is the simplest example of a F -ordered set as defined below:

Definition 32 A subset M of A is said to be F -ordered if
1) M is invariant under F , under F−1 and under the integer translations
T±1(x, y) = x± 1, y);
2) the restriction to M of the projection π(x, y) = x is injective;
3) if (x, y) and (x′, y′) are two elements of M such that x < x′, one has
π(F (x, y)) < π(F (x′, y′)) and π(F−1(x, y)) < π(F−1(x′, y′)), where π is the
first projection R2 → R.

Being invariant under integer translations, an F -ordered set M projects to an
invariant set M of A. In addition to well ordered periodic orbits, basic examples
are invariant curves and invariant Cantor sets. A fundamental property of F -
ordered sets, whose origin goes back to Birkhoff’s works on invariant curves, is
stated in the following lemma:

Lemma 33 Let F be a monotone twist. We suppose that F and F−1 are uni-
formly Lipschitzian. There exists l > 0, depending only on F such that, if M is
F -ordered and if (x, y) and (x′, y′) belong to M , one has the uniform Lipshitz
estimate

|y − y′| ≤ l|x− x′|.

Proof. Let us suppose that y > y′ (if not, replace F by F−1). The proof can
be read on figure 5.4 :
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Figure 5.4 : a(y − y′) ≤ x′′1 − x′1 ≤ x′′1 − x1 ≤ b(x′ − x).

The first inequality comes from the monotone twist condition, the second one
form the fact that M is ordered, and the third one from the fact that F is
supposed to be uniformly Lipshitzian. In the perturbative case, when F is
close to an integrable map, one can get much better estimates for the Lipschitz
constant (see [H].

It follows from the Lipschitz estimates that the closure of a F -ordered subset
is also F -ordered. The projection M on the annulus A of a closed F -ordered
set M ⊂ A is called by Katok a Mather set (this is not exactly the definition
used today but it is convenient to keep it in these notes). The restriction of F
to a Mather set preserves the cyclic order. Hence, it is topologically conjugate
to the restriction to K of some homeomorphism f of the circle T 1, where K
is the (injective) projection of M to T1. This implies that a Mather set has a
rotation number. In case of a Birkhoff orbit of type (p, q), this rotation number
is obviously equal to p/q (mod 1).

Every closed subset of a Mather set being itself a Mather set, any Mather
set contains a minimal one. The structure of circle homeomorphisms (see [?]
Proposition 32 or [L]) that a minimal Mather set is
– either a Birkhoff periodic,
– or an invariant curve on which F is conjugated to a rotation with irrational

rotation number (which means dense orbits),
– or an invariant Cantor set.

Figure 5.5

Soon after Aubry and Mather had proved the existence of such invariant sets
for any rotation number, Katok made the fundamental remark that, because of
the Lipschitz estimates, the existence of Mather sets of any irrational rotation
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number did follow from the existence of Birkhoff periodic orbits. More precisely
(see [K] for details):

Proposition 34 The set of all Mather sets is closed in the Hausdorff topology
(defined on the set of all closed subsets of a compact metric space) and the
rotation number of a Mather set is continuous in this topology.

5.2 Existence of Birkhoff periodic orbits: the variational
principle

Let F : A → A be a conservative monotone twist map, F : A → A is a lift to
the covering space. The preservation of orientation and of the measure dxdy
implies the preservation of the area 2-form dx ∧ dy. If F (x, y) = (x′, y′), this
can be written

dx′ ∧ dy′ = dx ∧ dy,
and implies (by the Poincaré lemma) the existence of a function h such that

dh(x, x′) = −y(x, x′)dx+ y′(x, x′)dx′,

where y = y(x, x′ and y′ = y′(x, x′) are uniquely defined by the condition that
F (x, y) = (x′, y′) (see the figure below which indicates the obvious interpretation
of h). Conversely, h defines F by

F

(
x,−∂h

∂x
(x, x′)

)
=

(
x′,

∂h

∂x′
(x, x′)

)
.

Figure 5.6

Of course, if A is the closed annuuis, h is defined only in the subset B of R2

defined by
B = {(x, x′), f0(x) ≤ x′ ≤ f1(x)} ,

where f0 and f1 are the restrictions of F to the boundaries R×{0} and R×{1}
of A. Note that h is bounded below and such that h(x + 1, x′ + 1) = h(x, x′).

It is of class at least C2 and its hessian ∂2

∂x∂x′ is everywhere negative.
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If p and q are integers, let Xp,q be the set of sequences

x = (xi)i∈Z such that ∀i ∈ Z, xi+q = xi + p.

The embedding Xp,q → Rq defined by x 7→ (x0, · · · , xq − 1) induces a topology
on Xp,q. Let W = W0,q : Xp,q → R be defined by

W (x) =

q−1∑
i=0

h(xi, xi+1).

W is invariant under integer translations, i.e. W (x) = W (T (x)), where

T (x) = (x̄i)i∈Z with x̄i = xi + 1.

The quotient W/T is compact (under our hypotheses this is true for a finite
annulus as well as for the infinite cylinder) and W is bounded below, hence it
attains its minimum. If the minimum is in the interior of the domain B, it is a
critical point, that is: ∂W

∂xi
= 0 for i = 0, 1, · · · , q − 1. This implies that

∀i ∈ Z,
∂h

∂x
+
∂h

∂x′
(xi, xi+1) = 0,

and hence that (xi,−∂h∂x (xi, xi+1)), i ∈ Z is an orbit (see the figure below).

Figure 5.7

In fact, an argument due to Aubry and Le Daeron shows that such an orbitt
is necessarily a Birkhoff orbit. All this works nicely in case A is the infinite
cylinder; in case A is a finite annulus, there are some technical problems due to
the existence of a boundary for the domain of definition B of h. We shall explain
the proof given by Katok, which solves in a very simple way – indeed without
differential calculus – all these problems. As often in mathematics, it will be
easier to solve a more general problem, namely the case when the preserved
measure is just asked to weight positively each open subset and no regularity
beyond continuity is required.
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Definition 35 The interval [ρ0, ρ1] defined by the rotation numbers ρi = ρ(F |R×{i})
of the restriction of F to the boundary of A is called the twist interval. If A = R2,
the twist interval is ]−∞,+∞[.

Theorem 36 Le F be a monotone twist homeomorphism of the annulus which
preserves a measure µ weighting positively open subsets. Then F has a Birkhoff
periodic orbit of type (p, q) for any p/q belonging to the twist interval.

Proof. Influenced by definition 31, we adapt the labeling of sequences to
the expected behaviour of the orbit we are looking for: let Mp,q be the set of
non decreasing bi-infinite sequences (xn)n∈Z of real numbers such that, noting
fi = F |R×{i} ,

xn+q = xn + 1 and f0(xn) ≤ xn+p ≤ f1(xn).

The topology onMp,q being induced by the embedding (xn)n∈Z → (x0, · · · , xq−1),
its quotient Mp,q/T by the integer translations (xn)n∈Z 7→ (xn + k)n∈Z is com-
pact. That it is non empty can be seen in the following way: either p/q lies in
the interior of the rotation interval and ∀x, fq0 (x) < x + p < fq1 (q), or it lies
on the boundary R× {i} and ∃x̃, x̃+ p = fqi (x̃) (see [C1] section 4.3, Corollary
27). In the first case, one takes the sequence xn = fnt (x) for some homeomor-
phism ft belonging to a monotone family interpolating between f0 and f1 and
x arbitrary, while in the second case one takes the sequence fqi (x̃).
Guided by the case when the lift µ to A of the invariant measure is the Lebesgue
measure dxdy, we define on Mp,q/T the functional

W ((xn)n∈Z) =

q−1∑
n=0

µ
(
τ(xn, xn+p)

)
,

where the “triangle” τ(x, x′) is defined on the figure below:

Figure 5.8

The claim is that any local minimum of W is a Birkhoff orbit of type (p, q). As
such an orbit satisfies F (zn) = zn+p, it suffices to prove, as already explained
(with different notations for the sequences), that at a local minimum of W , one
has

∀n ∈ Z, y(xn, xn+p) = y′(xn−p, xn),
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where we recall that, if (x, x′) ∈ B, y(x, x′) and y′(x, x′) are uniquely defined
by the equality F (x, y(x, x′)) = (x′, y′(x, x′)).

The proof of this equality is by showing that if it is not satisfied for some i, there
exists a small perturbation of the sequence, which lowers W . The different cases
are illustrated in the following figures.

We suppose first that xn−1 < xn < xn+1 and y′(xn−p, xn) > y(xn, xn+p) (left)
or y′(xn−p, xn) > y(xn, xn+p) (right). Moving a little xn to the left or to the
right we see that the preservation of µ leads to a contradiction: indeed, in
both cases, the sum µ

(
τ(xn−p, xn)

)
+µ
(
τ(xn, xn+p)

)
has decreased; in the first

case this is because the increase of µ
(
τ(xn, xn+p)

)
is smaller than the decrease

of µ
(
τ(xn−p, xn)

)
, while in the second one, the decrease of µ

(
τ(xn, xn+p)

)
is

greater than the increase of µ
(
τ(xn−p, xn)

)
.

Figure 5.9

Now suppose more generally that xn−1 < xn = xn+1 = · · · = xn+k < xn+k+1.
The twist property implies

1 ≥ y′(xn−p, xn) ≥ · · · ≥ y′(xn−p+k, xn+k) ≥ 0,

1 ≥ y(xn+p+k, xn+k) ≥ · · · ≥ y(xn+p, xn) ≥ 0,

hence either y′(xn−p, xn) ≥ y(xn+p, xn) or y(xn+p+k, xn+k) ≥ y′(xn−p+k, xn+k),
whichis similar to the first case, or for some l between 0 and k, y(xn+l, xn+p+l) =
y′(xn−p+l, xn+l).

Figure 5.10
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Note that, in contrast with the use of differential calculus, the cases when some
y(xi, xi+p) or y′(xi−p, xi) belongs to the boundary have nothing special.

5.3 Readings

1) [M2] J. Mather, Non-existence of invariant circles, In this short paper, John
Mather studies monotone twist mappings of the open cylinder T1 × R of the
form

(x, y) 7→ (x′ = x+ y + h(x), y′ = y + h(x)), with

∫ 1

0

h(x)dx = 0.

The condition on the integral of h is easily seen to be necessary for the existence
of an invariant curve homotopic to the circles T1×a. By a very simple proof rely-
ing on Birkhoff’s Lipschitz estimates for such an invariant curve, Mather shows
that for Chrikov’s standard map, which is the case when h(x) = k

2π sin 2πx, no
such invariant curve exists for k > 4/3.

2) [Mo1] J. Moser Monotone Twist Mappings and the Calculus of Variations,
Here, Jurgen Moser proves that any C∞ twist map may be considered as the
Poincaré return map of a time periodic Hamiltonian in the sense of section
4.2. The converse is no true, what plays the role of Hamiltonians satisfying the
Legendre condition ∂L

∂q̇2 being compositions of onotone twist maps.
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6 The Poincaré-Birkhoff-Conley twist map of the
annulus for the planar restricted 3-body prob-
lem

The problem we study in this section is a “caricature” of the 3-body problem
(Sun, Earth Moon or, more accurately, Sun, Jupiter and a satellite), which
shares many properties, as Poincaré had already noticed, with the geodesic flow
on a convex surface endowed with the induced metric of the euclidean space R3.
It is a historicaly fundamental example of a monotone twist map of the annulus.

6.1 The Kepler problem as an oscillator

The (normalized) motions in a plane of a particle submitted to the Newtonian
attraction of a fixed center – the so called Kepler problem – are the solutions of
the equation

ẍ = −x/|x|3,

where x ∈ R2 = C is identified with a complex number and the dot denotes the
time derivative. These equations are the Hamilton equations

ẋ =
∂H

∂ȳ
, ẏ = −∂H

∂x̄

associated to the Hamiltonian H : (C \ {0})× C→ R and the symplectic form
ω respectively defined by

H(x, y) = |y|2 − 2/|x|, ω = dx ∧ dȳ + dx̄ ∧ dy.

Exercise. Show that, if x = x1 + ix2 and y = y1 + iy2, these are, up to a factor
2, the classical Hamilton equations and symplectic form:

ẋi =
1

2

∂H

∂yi
, ẏi = −1

2

∂H

∂xi
, i = 1, 2, ω = 2(dx1 ∧ dy1 + dx2 ∧ dy2).

The Levi-Civita mapping (z, w) 7→
(
x = 2z2, y = w/εz̄

)
defines a two-fold

covering

(L.C.) K−1
2 (0) \ {z = 0} → Σε = H−1(−1/ε2)

from the complement Σ̃ε of the plane z = 0 in the 0-energy 3-sphere K−1
2 (0) of

the harmonic oscillator

K2(z, w) = |z|2 + |w|2 − ε2 = ε2|z|2
[
H
(
2z2, w/εz̄

)
+ 1/ε2

]
,

to the energy hypersurface Σε = H−1(−1/ε2) of the Kepler problem (both
diffeomorphic to S1 × R2).
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Figure 6.1: The Levi-Civita map

It is conformally symplectic (precisely K∗2ω = 4
ε (dz ∧ dw̄+ dz̄ ∧ dw)) and sends

integral curves of the harmonic oscillator with energy ε2 to those of the Kepler
problem with energy −1/ε2 after the change of time dt = 2ε|x|dt′ which prevents
the velocity to become infinite at collision.
In the still conformally symplectic coordinates

u1 = w + iz, u2 = w̄ + iz̄, du1 ∧ dū1 + du2 ∧ dū2 = 2i(dz ∧ dw̄ + dz̄ ∧ dw)

these integral curves are u1(t) = c1e
it, u2(t) = c2e

it, |c1|2 + |c2|2 = 2ε2, that is
the intersections of the 3-sphere with the complex lines u1/u2 = cste, or in other
words the fibers of the Hopf fibration (u1, u2) 7→ u1/u2 : S3 → P1(C) = S2. The
closest approximation to a (bivalued) section of the Hopf map, the annulus

arg u1 + arg u2 = 0 (mod 2π)

is a (bivalued) global surface of section of the flow of the Harmonic oscillator in
a sphere of constant energy: with the exception of the two fibers which form its
boundary, all the fibers cut this annulus transversally in two points; hence, the
second return map is the identity. Thus, perturbations of the Kepler problem
with negative energy are essentially perturbations of the identity map. This is
one of the main sources of degeneracies in celestial mechanics.

Figure 6.2: the annulus of section
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Remarks. 1) We kept the two-fold covering because working in S3 ⊂ R4 is
convenient. To get rid of the bivaluedness of the section it suffices to go to the
quotient by the antipody, replacing S3 by RP 3 = SO(3). The return map then
becomes truly the identity.

2) Show that 1
2ε

(
|u1|2 − |u2|2

)
= 1

iε (z̄w − zw̄) = x1y2 − x2y1 is the angular
momentum of the motion defined by the element (x, y) of the phase space.

Exercise: retrieving the Kepler ellipses. From the solution of the equations
in (u1, u2) space,

u1(t) = r1e
i(s1+t), , u2(t) = r1e

i(s2+t),

show that the solutions i (x, y) space lie on ellipses (recall that the total energy
− 1
ε2 is negative) given by the following equations:

x = −1

2
eiϕ
[
(r2

1 + r2
2) cosχ− 2r1r2 + i(r2

1 − r2
2) sinχ

]
,

where the angles ϕ, χ are well defined mod π by the formulas

ϕ = s1 − s2 = Argu1 −Argu2, χ = s1 + s2 + 2t = Argu1 + Argu2.

Figure 6.3: A Kepler ellipse

6.2 The restricted problem in the lunar case

The equations of the n-body problem

d2~ri
dt2

= g
∑
j 6=i

mj(~rj − ~ri)
||~ri − ~rj ||3

make sense even if some of the masses vanish. Such masses are influenced by the
non-zero masses but do not influence them. We shall consider two primaries, say
the Sun (mass µ) and the Earth (mass ν) which have a uniform circular motion
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around their center of mass and a 0-mass third body, say the Moon, which
stays close to the Earth. We identify the inertial plane with C (coordinate
X = X1 + iX2 centered on the center of mass of the couple Sun-Earth) and
introduce rotating (synodic) complex coordinates (ζ, u) by setting

X = ζeiωt, Y = Ẋ = ueiωt, that is u = ζ̇ + iωζ.

The equations become

ζ̈ + 2iωζ̇ − ω2ζ = gµ
ζS − ζ
|ζS − ζ|3

+ gν
ζE − ζ
|ζE − ζ|3

,

where ζS = − ν
µ+ν r0 and ζE = µ

µ+ν r0 are the respective (fixed) positions of the
Sun and the Earth in the rotating frame. They take the following Hamiltonian
form (independent of t because of rotational invariance):

dζ

dt
=
∂Hsyn

∂ū
,

du

dt
= −∂Hsyn

∂ζ̄
, where

the Hamiltonian and the symplectic form are respectivelyHsyn(ζ, u) = |u|2 + 2ωIm(ζū)− 2
gµ

|ζS − ζ|
− 2

gν

|ζE − ζ|
,

ωsyn = du ∧ dζ̄ + dū ∧ dζ.

Due to the invariance under rotation of the problem, Hsyn is independent of
time. We shall use slightly different coordinates, centered on the earth:

x = ζ − µ

µ+ ν
r0, y = u− iω µ

µ+ ν
r0.

Moreover we shall normalize the equations by setting

g = 1, µ+ ν = 1, r0 = 1, so that ω =
√
g(µ+ ν)/r

3
2
0 = 1.
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(x,y)eC2,
x = x, + ix2

= yt + iy2 = dx/dt + iiox

FIGURE 1

and get the new equations (in R4 = C2)

dz/dt' = BK/dw, dw/dt'=-dK/dz,

K(z, w) = {\ + 2ie(zw-zw)}\z\2+\w\2-pe2-pe3g(z),

g(z) = 2\z\2{l/\2z2+1| - 1 + z2 + (z)2} = |z|2{2|z|4+3(z4+ (z")4) + O(\z\6)}.

These new equations have the following property: the energy surface K = 0 is close
to (and diffeomorphic to) the 3-sphere |z|2+|w|2 = ve2; if we restrict the Levi-Civita
mapping (z, w)-»(x, y) to the complement (diffeomorphic to an open solid torus)
of the 'circle' z = 0, we get an orbit preserving twofold covering of the energy surface
H = -\/e2 of the restricted three-body problem.

The structure of K is nice enough. If one keeps only the leading (quadratic)
terms, the linear flow one obtains (Hopf flow) is, up to the twofold covering, the
usual regularization of the two-body problem by the geodesic flow on the round
2-sphere ([2], [7]). If one forgets only the last term fie2g(z) (which is of order 6
in z), one obtains the still integrable two-body problem in a rotating frame: the
complement in the energy surface of two linked periodic orbits (corresponding to
the direct and retrograde circular motions having the given value of the Jacobi
integral) is foliated by invariant tori parametrized by the angular momentum. The
'middle' torus, corresponding to zero angular momentum, contains the 'circle' z = 0
and each integral curve lying on this torus is made up of ejection-collision orbits
(figure 2).

Figure 6.4: Rotating coordinates
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The equations of motion of the Moon become

ẋ =
∂H

∂ȳ
, ẏ = −∂H

∂x̄
,

where the Hamiltonian (up to the constant term which we have changed) and
the symplectic form are respectivelyH(x, y) = |y|2 + iω(x̄y − xȳ)− 2ν

|x|
− 2µ

|x+ 1|
− µ(x+ x̄) + 2µ,

ω = dy ∧ dx̄+ dȳ ∧ dx = 2(dy1 ∧ dx1 + dy2 ∧ dx2).

As in the first section, we consider the energy hypersurface H−1(1/ε2), with ε
a small parameter. Its projection on the x plane is made of three connected
components: a neighborhood of the Sun, a neighborhood of the Earth and a
neighborhood of infinity (the so-called Hill’s regions, which imply Hill’s stability
result, praised by Poincaré).

Figure 6.5: Hill’s regions

We shall be interested in the connected component of H−1(1/ε2) where |x| stays
small. Then

H(x, y) = |y|2 + iω(x̄y − xȳ)− 2ν

|x|
− 2µ

[
1

4
|x|2 +

3

8
(x2 + x̄2) +O3(x)

]
.

We see that the influence of the Sun on the Moon becomes negligible with
respect to the one of the Earth and that at the collision limit, it disappears and
one is left with a Kepler problem. To make this apparent, we again apply the
Levi-Civita transformation (z, w) 7→

(
x = 2z2, y = w/εz̄

)
. We get

K(z, w) = ε2|z|2
[
H
(

2z2,
w

εz̄

)
+

1

ε2

]
= f2(z, w)|z|2 + |w|2 − νε2 − ε2µg(z),
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where

f(z, w) =
√

1 + 2iε(z̄w − zw̄), g(z) = 2|z|2
(

1

|2z2 + 1|
− 1 + z2 + z̄2

)
.

As in the Kepler case, the direct image of the restriction to K−1(0) \ {z = 0}
of the Hamiltonian flow ż = ∂K

∂w̄ , ẇ = −∂K∂z̄ becomes the flow of the restricted
problem with Jacobi constant −1/ε2 after the change of time dt = 2ε|x|dt′.
Each truncation of the Taylor expansion of K(z, w) at the origin,

K(z, w) = −νε2+|z|2+|w|2+2iε|z|2(z̄w−w̄z)−ε2µ(2|z|6+3|z|2(z4+z̄4)+08(z)),

makes sense dynamically when restricted to K−1(0) : we get

at order 2, the harmonic oscillator, which regularizes the Kepler problem;
at order 4, the regularization of the Kepler problem in a rotating frame, which
provides a nice example of a monotone twist map.
at order 6, Hill’s problem, one of the simplest “non integrable” problems.

6.3 The regularized Kepler problem in a rotating frame:
annulus of section and return map

The truncation at fourth order K4(z, w) = −νε2 +f2(z, w)|z|2 +w2 of K, which
amounts to equating the mass of the Sun to zero, is a completely integrable
Hamiltonian, a first integral being the angular momentum or, what is equivalent,
the function f2(z, w). This is not surprising as we know that the restriction to
K−1

4 (0) is the regularization of the Kepler problem in a rotating frame, the
solutions of which are all periodic or quasi periodic: the intersection of level
hypersurfaces of K4 and f2 defines in general a two-dimensional torus, except
when the two hypersurfaces are tangent, that is when w = ±if(z, w)z. In this
case the intersection degenerates to a circle; in K−1

4 (0), this defines two solutions
which project (by a 2-1 map) onto the two circular solutions (one direct, one
retrograde) of the rotating Kepler problem with the given value −1/ε2 of the
Jacobi constant.

We set
ξ1 = w + if(z, w)z, ξ2 = w̄ + if(z, w)z̄,

which turns the circular solutions into ξi = 0, i = 1, 2. Note that this is not a
symplectic change of coordinates. The equations of motion become

dξ1
dt

= iξ1

(
f̃
(
|ξ1|2 − |ξ2|2

)
− ε

2f̃2
(
|ξ1|2 − |ξ2|2

) |ξ1 − ξ̄2|2) ,
dξ2
dt

= iξ2

(
f̃
(
|ξ1|2 − |ξ2|2

)
+

ε

2f̃2
(
|ξ1|2 − |ξ2|2

) |ξ1 − ξ̄2|2) ,
where the function f̃ of one real variable X is defined implicitely by

f̃(X)− f̃3(X) = εX, that is f̃(X) = 1− ε

2
X +O(ε2X2).
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We set
ξ1 = r1e

iα1 , ξ2 = r2e
iα2 .

Obviously, r2
1 = |ξ1|2 and r2

2 = |ξ2|2 are constants of motion as well as

1

2

(
r2
1 + r2

2

)
− νε2 = K4(z, w) and ε

(
r2
1 − r2

2

)
= f(z, w)− f3(z, w).

One checks readily that, writing f̃ for f̃(r2
1 − r2

2),

dr1

dt
= 0,

dr2

dt
= 0,

dα1

dt
= 1− ε 1

2f̃3

[
r2
1 + r2

2 − 2r1r2 cos(α1 + α2)
]
,

dα2

dt
= 1 + ε

1

2f̃3

[
r2
1 + r2

2 − 2r1r2 cos(α1 + α2)
]
,

which, implying dα1

dt + dα2

dt = 2, are easily integrated.



r1(t) = r1, r2(t) = r2,

α1(t) = α1(0) + t− ε (r2
1 + r2

2)

2f̃3
t+ ε

r1r2

2f̃3

[
sin
(
α1(0) + α2(0) + 2t

)
− sin

(
α1(0) + α2(0)

)]
,

α2(t) = α1(0) + t+ ε
(r2

1 + r2
2)

2f̃3
t− εr1r2

2f̃3

[
sin
(
α1(0) + α2(0) + 2t

)
− sin

(
α1(0) + α2(0)

)]
.

The annulus twist map : The same annulus

arg ξ1 + arg ξ2 = 0 (mod 2π)

as the one we used for the Kepler problem in the inertial frame will capture
the global dynamics, forgetting only the time law. Note that it contains the
collision circle z = 0 (that is ξ1 − ξ̄2 = 0). It is bounded by the two periodic
solutions ξ1 = 0 and ξ2 = 0 which, corresponding to the circular solutions, are
geometrically indifferent to the rotation of the frame.

As (α1 + α2)(t) = (α1 + α2)(0) + 2t, the first return map coincides with the
“time π” map of the flow; it amounts to picking on each orbit the aphelium
(point of the moon trajectory closest to the Earth), a point which moves on a
circle in the direction opposite to the rotation of the frame.

Figure 6.6: Rotating ellipses
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Taking θ = α1 and r = r2
1 − r2

2 as coordinates in the interior of the annulus
(which is then bounded by the curves r = ±2νε2), the first return map on the
annulus is

P (θ, r) =

(
θ +

1

2
− ν

2f̃3(r)
ε3, r

)
=

(
θ +

1

2
− ν

2
ε3 − 3ν

4
ε4 + h.o.t., r

)
.

Finally, setting ρ = 2νε2r so that the equation of the boundary of the annulus
becomes ρ = ±1, we get (keeping by a slight abuse the same notation P )

P (θ, ρ) =

(
θ +

1

2
− ν

2
ε3 − 3ν2

2
ε6ρ+ 0(ε8), ρ

)
,

which is as expected an integrable monotone twist of the standard annulus which
preserves a measure regular with respect ot the Lebesgue measure. Of course,
with a little extrawork one could have chosen a symplectic change of coordinates
and keep the standard measure.

6.4 A glimpse of the rest of the story

One can show (see [C4] and the references it contains) that when the perturba-
tion of the Sun is added, the circular orbits can be continued to almost circular
periodic orbits which can serve as boundaries of a global annulus of section of
the energy manifold (still diffeomorphic to a 3-sphere) of the regularized prob-
lem. After some computing, one finds a return map of the following form in
an annulus whose boundaries are close to ρ = ±1 and which one can chose to
contain the collision curve:

Pε(θ, ρ) =

(
θ +

1

2
− ν

2
ε3 − 3ν2

2
(1− µ

4
)ε6ρ+ 0(ε7), ρ+O(ε7)

)
.

Coming back to the definition of this annulus, one checks that the return map
corresponds essentially to the passages of the orbit of the Moon through aphe-
lium in the rotating frame. Originating from a Hamiltonian system, this map
necessarily preserves a measure defined by a smooth density.

As it is a O(ε7) perturbation of an integrable twist map whose twist is of size ε6.
This is a perfect ground for applying the main results of the general theory of
conservative twist maps, a particular case of the theory of Hamiltonian systems
with two degrees of freedom:
1) Applied to the iterates of the return map, the Birkhoff fixed point theorem
yelds an infinite number of periodic orbits of higher and higher periods to which
correspond periodic orbits of long period of the Moon around the Earth in the
rotating frame;
2) The Moser invariant curve theorem implies the existence of a positive measure
Cantor set of invariant curves on which the map is conjugated to a diophantine
irrational rotation and to which correspond quasi periodic orbits of the Moon;
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3) To the Liouville rotation numbers, the Aubry-Mather theory associates in-
variant Cantor sets to which correspond orbits of the Moon with a Cantor
caustic
4) Finally, it is possible to prove that the image of the collision circle inter-
sects itself transversally at eight points [?]; in particular, it is not contained
in an invariant curve. Varying the value of ε moves the invariant curve of a
given rotation number across the annulus which forces intersection with the
collision curve. This proves the existence of invariant “punctured” tori which
correspond to orbits of the Moon which persistently change their direction of
rotation around the Earth in the rotating frame.
Remark. For writing down formulas, working in the 2-fold covering K−1(0)
of the energy hypersurface diffeomorphic to S3 is convenient but one can prefer
to state the results downstairs in the compactification (regularization), diffeo-
morphic to SO(3) (that is to the real projective space of dimension 3), of the
original energy hypersurface H−1(− 1

ε2 ). The first return map then becomes a
perturbation of the Identity (the Kepler case) of the form

P(θ̃, ρ) =
(
θ̃ − νε3 − 3ν2(1− µ

4
)ε6ρ+ 0(ε7), ρ+O(ε7)

)
.

On Figure 7-7 are summarized some features of the complicated dynamics of the
return map of the restricted three-body problem in the lunar case (see [C2, C4];
the roman numbers refer to Chapters of Poincaré’s New Methods of Celestial
Mechanics).

Figure 6.7
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7 Appendix: a brief introduction to differential
forms

We deal essentially with the (local) case of an open subset Ω of Rn. The defi-
nitions are given in such a way that the generalization to the (global) case of a
manifold M is straightforward.

7.1 Tangent and cotangent bundle

Given an open subset Ω of Rn, the tangent space Tx0
Ω and the cotangent space

T ∗x0
Ω at a point x0 ∈ Ω may be intrinsically defined as follows: Tx0Ω is the

quotient of the set of C1 local paths c : (R, 0) → (Ω, x0) by the equivalence
relation which identifies two local paths c1 and c2 if (c1 − c2)(t) = o(t). The
equivalence class is the velocity vector c′1(0) = c′2(0).

In the same way, T ∗x0
Ω is the quotient of the set of C1 local maps f : (Ω, x0)→

(R, 0) by the equivalence relation which identifies two local maps f1 and f2 if
(f1 − f2)(x) = o(|x − x0|). The equivalence class is the derivative df1(x0) =
df2(x0). Moreover, the coupling induced by (f, c) 7→ (f ◦ c)′(0) identifies natu-
rally T ∗x0

Ω with the dual of Tx0Ω.

One checks that the addition of maps endows Tx0Ω and T ∗x0
Ω with the structure

of real vector spaces.

Figure 7.1

These definitions generalize immediately to the case when Ω is replaced by a
manifold M .
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Figure 7.2

What does not generalize from the case of Ω to the one of M is the fact that,
due to the existence of translations in Rn, there are canonical identifications of
Tx0

Ω with T0Rn ≡ Rn and of T ∗x0
Ω with T ∗0 Rn ≡ (Rn)∗. This provides canonical

identifications of the disjoint union TΩ (resp. T ∗Ω) of tangent (resp. cotangent)
spaces at all points of Ω to the product Ω× Rn (resp. Ω× (Rn)∗).

Figure 7.3

On a manifold, such a (non canonical) product structure exists only locally and
provides TM (resp. T ∗M) with the structure of a vector bundle over M .

Given a differentiable map F from a manifold M to another manifold N , its
tangent map TF : TM → TN is uniquely defined as the map which sends the
velocity vector X1 = c′1(0) ∈ Tx1

M1 of a path c1 in Ω1 such that c1(0) = x1 to
the velocity vector X2 = c′2(0) ∈ Tx2M2 of the path c2 = F ◦ c1 in M2. In the
case M1 = Ω1 and m2 = Ω2 are open subsets respectively of Rn1 and Rn2 , after
making the canonical identifications Tx1

Ω1 ≡ Rn1 and Tx2
Ω2 ≡ Rn2 , one gets

back the elementary definition of the derivative dF (x1) as a linear map from
Rn1 to Rn2 .

Figure 7.4
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Note that the consideration of the tangent map simplifies the expression of the
derivative of a composed map which becomes simply

T (G ◦ F ) = TG ◦ TF.

7.2 Vector fields and 1-forms (= covector fields)

Associating differentiably to each point x ∈ Ω a tangent vector X(x) ∈ TxΩ
(resp. a tangent covector l(x) ∈ T ∗xΩ) one defines a differentiable vector field
(resp. covector field) on Ω. Through the canonical indentification of TxΩ with
Rn, a vector field on Ω becomes a differentiable map from Ω to Rn and a covector
field (or 1-form) becomes a differentiable map from Ω to (Rn)∗.

In the case of a manifold, a vector field on M is a section of the vector bundle
TM → M , that is a map σ : M → TM such that π ◦ σ = Identity. In the
same way a covector field (aso called a differential 1-form, or simply 1-form) is
a section of the vector bundle T ∗M .

Figure 7.5

The first example of differential 1-form is the derivative of a function F : M → R.
Indeed, at each point x ∈M one associates the derivative dF (x) which is a linear
map from TxM to TF (x)R ≡ R, that is an element of T ∗xM . Considered as a
differential 1-form on M it is noted dF .

In case M = Ω ⊂ Rn, one has the canonical decomposition dF =
∑n
i=1

∂F
∂xi

dxi,
where the dxi are the derivatives of the coordinate functions x = (x1, · · · , xn) 7→
xi, i = 1, · · ·n. At each point x ∈ Ω, {dx1(x), · · · , dxn(x)} is the basis of
(Rn)∗ ≡ T ∗xΩ dual to the canonical basis of Rn.

One of the advantages of 1-forms on vector fields can be seen when comparing
the natural operations on them: direct image (or push forward) F∗X of a vector
field X on M by a differentiable map F : M → N , inverse image (or pull back)
F ∗ω of a 1-form ω on N by the map F . The first one can be defined only when
F is a diffeomorphism while the second is defined for any differentiable map F :

(F∗X)(y) = dF (F−1(y))X(F−1(y)) ∈ TyN, (F ∗ω)(x) = ω(F (x))◦dF (x) ∈ T ∗xM.

Note that the derivation of composed functions takes the nice form

d(G ◦ F ) = F ∗dG,
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and that, if F is a diffeomorphism and X a vector field on M , one has

< (F ∗ω), X >=< ω,F∗X > .

The great simplicity of computations with differential forms appears clearly on
the formulas in coordinates when F = (F1, · · · , Fp) : Ω → O is a map from an
open set Ω ⊂ Rn (coordinates x1, · · · , xn) to an open set O ⊂ Rp (coordinates
y1, · · · , yp) : if ω =

∑p
j=1 ωjdyj is 1-form on O (hence the ωj are functions on

O), its pull back by F is the 1-form on Ω

F ∗ω =

p∑
j=1

(ωj ◦ F )dFj =

n∑
i=1

p∑
j=1

(ωj ◦ F )
∂Fj
∂xi

dxi.

7.3 Integration of 1-forms

If $ = u(t)dt is a 1-form on an interval [a, b] ⊂ R, one defines its integral over
the oriented interval [a, b] by ∫

[a,b]

$ =

∫ b

a

u(t)dt.

Now, if ω =
∑n
i=1 ωidxi and c : [a, b] → Ω are respectively a 1-form and an

oriented differentiable path on Ω, one defines the integral of ω on the oriented
path c by ∫

c

ω :=

∫ b

a

c∗ω ,

which is nothing but the classical line integral
∫
c

∑n
i=1 ωi(x1, · · · , xn)dxi.

The reader will show that if ϕ : [α, β] → [a, b] is an increasing diffeomorphism,∫ β
α
ϕ∗$ =

∫ b
a
$ and hence that the definition just given of

∫
c
ω is independent

of the choice of the parametrization of the path c provided this parametrization
respects orientation (i.e. it does not change if c is replaced by c ◦ ϕ where ϕ
respects orientation). Hence integration is a duality pairing between 1-forms
and oriented paths.

In the sequel, we define k-forms for k ≥ 2; we need first recall some algebra:

7.4 Exterior forms

A k-linear antisymmetric form on a real vector space E is a mapping f : Ek → R
linear in each of its k arguments and such that, for every permutation σ of the
set {1, 2, · · · , k}, one has

f(x1, x2, · · · , xk) = ε(σ)f(xσ1 , x
σ
2 , · · · , xσk),

where ε(σ) = ±1 is the signature of σ and we noted xσi = xσ(i). The set of

these forms has a natural structure of a real vector space ; it is noted ∧kE∗. If
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n is the dimension of E, n, the dimensions of ∧kE∗ is
(
n
k

)
. In particular, every

exterior n-form on Rn is a multiple of the determinant and orienting E amounts
to choosing which half-line of ∧nE ∼= R will be called positive.

Definition 37 Let f be an element of ∧kE∗, g an element of ∧lE∗, and v an
element of E. The interior product ivf of f by v is the element of ∧k−1E∗

defined by
(ivf)(x1, x2, · · · , xk−1) = f(v, x1, x2, · · · , xk−1).

The exterior product f ∧ g of f by g is the element of ∧k+lE∗ defined by

(f ∧ g)(x1, · · · , xk+l) =
∑
σ∈Σ

ε(σ)f(xσ1 , · · · , xσk)g(xσk+1, · · · , xσk+l),

where Σ is the set of (k, l)-threshing, i.e. the set of permutations σ of the set
{1, 2, · · · , k + l} such that σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l).

The exterior product is associative, (f ∧ g) ∧ h = f ∧ (g ∧ h), distributive,
∀λ, µ ∈ R, (λf + µg) ∧ h = λ(f ∧ g) + µ(f ∧ h), and anticommutative,
f ∧ g = (−1)klg ∧ f. The above definition of the exterior product as the “anti-
symmetrized” of the tensor product becomes simpler when f and g are 1-forms:
let f1, · · · , fk be elements of ∧1E∗ = E∗; the exterior product becomes a deter-
minant (associativity allows to suppress parentheses) :

(f1 ∧ · · · ∧ fk)(x1, · · · , xk) = det

f1(x1) · · · f1(xk)
· · · · · · · · ·

fk(x1) · · · fk(xk)

 .
Let {e1, · · · , en} be a basis of E, {e∗1, · · · , e∗n} the dual basis. Computing di-
mensions show immediately the following

Lemma 38 If the dimension of E is n, the collection of elements e∗i1 ∧ · · · ∧ e
∗
ik

such that 1 ≤ i1 < · · · < ik ≤ n, is a basis of ∧kE∗.

The above lemma allows easy computation of the exterior product of two exterior
forms f and g of respective degrees k and l: once chosen a basis of E, one
decomposes the two forms on the bases of ∧kE∗ and ∧lE∗ given by the lemma
and one applies associativity, distributivity, and anticommutativity to reorder
the terms. One obtains the expression of f ∧ g on the basis of ∧k+lE∗ given by
the lemma.

7.5 Differential k-forms

In the same way as a 1-form ω on the open set Ω of Rn consists in giving for
each q in Ω an element ω(q) of the cotangent space T ∗q Ω depending differentiably
on q, a k-form ω on Ω consists in giving for each q an element ω(q), depending
differentiably on q, of ∧k(TqΩ)∗ = ∧kT ∗q Ω. The meaning of such a “differentiable
dependence” is clear as soon as one canonically identifies each tangent space
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TqRn to Rn by translation. A differential k-form on Ω of class Cr is then
identified to a Cr mapping from ω to ∧k(Rn)∗.

Coupling with vector fields. The result ω(X1, · · · , Xk) of the coupling of a
differential k-form with a k-tuple of vector fields is a function on Ω : if each vector
field is identified with a mapping Xi from Ω to Rn, one has ω(X1, · · · , Xk)(q) =
ω(q)

(
X1(q), · · · , Xk(q)

)
. Note that this coupling is C∞(Ω, R)-linear in each of

its arguments: this is the manifestation of the tensorial character of differential
forms (see appendix 2), that is of the fact that the value of ω(X1, · · · , Xk) at
some point depends only of the values of X1, · · · , Xk at this point. Conversely,
one shows that a mapping ω, which to an ordered k-tuple X1, · · · , Xk of vector
fields on Ω associates a function ω(X1, · · · , Xn) of classe C∞ onr Ω, is defined by
a k-differential form if and only if it is C∞(Ω, R)-linear in each of its arguments
and antisymmetric.

Interior and exterior products.
Being defined at each point, the interior and exterior product keep their meaning
for vector field and differential forms: the interior product iXω is a (k−1)-form
if ω is a k-form and X a vector field; the extrior product ω1 ∧ ω2 is a (k + l)-
form if ω1 is a k-form and ω2 is a l-form.

Canonical expression.
The derivative dϕ of a function ϕ : Ω→ R, that is the family of the derivatives
dϕ(q) of ϕ at each point q ∈ Ω, is a differential 1-form on Ω. Recall that the
1-form dqi is the derivative of the “i-th” coordinate” function (q1, · · · , qn) 7→ qi;
one deduces from lemma 38 that each k-form of class Cr on Ω can be uniquely
written

ω =
∑

i1<···<ik

ai1···ikdqi1 ∧ · · · ∧ dqik ,

where the ai1···ik are functions of class Cr on Ω.

Pullback and integration.

Definition 39 Let O ⊂ Rm and Ω ⊂ Rn be two open subsets, ϕ : O → Ω a
differentiable mapping, ω a differential k-form on Ω. The pullback $ = ϕ∗ω of ω
by ϕ is the differential k-form on O defined, for any x ∈ O and ξ1, · · · , ξk ∈ TxO,
by

$(x)(ξ1, · · · , ξk) = ω(ϕ(x))
(
dϕ(x)ξ1, · · · , dϕ(x)ξk

)
,

As in the case of 1-forms, if c is differentiable map from the k-dimensional cube
[0, 1]k into Ω and ω is a k-form on ω, one defines∫

c

ω :=

∫
[0,1]k

c∗ω :=

∫
[0,1]k

∑
i1<···<ik

ai1···ikdqi1 · · · dqik ,

where the k-form on the cube c∗ω is c∗ω =
∑
i1<···<ik ai1···ikdqi1 ∧ · · · ∧ dqik .

One checks that it is well defined up to composition of c with a diffeomorphism
of the cube which preserves orientation (i.e. a diffeomorphism whose derivative
at each point has a positive determinant; indeed, when dealing with n-forms
instead of measures, |detϕ| is replaced by detϕ in the formulas).
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7.6 Boundary and coboundary

Integration of differential forms provides a natural setting for generalizing the
fondamental theorem of the differential and et integral calculus, that is the
(so-called) Stokes formula ∫

c

dω =

∫
∂c

ω,

which, rather than a theorem, is a definition of the coboundary ω 7→ dω of a
k-form as the adjoint of the boundary c 7→ ∂c of an oriented singular chain
(that is of a formal sum of differentiable images of oriented submanifolds with
boundary or corners) of dimension k :

< c, dω >=< ∂c, ω > .

A natural way of making use of this definition to find an expression of the
coboundary is to consider the integral of a differential (n − 1)-form on the
oriented boundary of an n-cube:

The oriented boundary – a formal sum of oriented faces – of an oriented cube
In := [0, 1]n (and in the same way, the definition of the oriented boundary ∂c
of an oriented singular chain c), is defined by the following formula (a hat over
a letter means that the letter is absent):

∂In =

n∑
i=1

(−1)i
[
bi,0(In−1)− bi,1(In−1)

]
, where

{
bi,0(x1, · · · , x̂i, · · · , xn) = (x1, · · · , xi−1, 0, · · · , xn),
bi,1(x1, · · · , x̂i, · · · , xn) = (x1, · · · , xi−1, 1, · · · , xn).

The formula becomes clear when looking at the low dimensional cases:

If ω is an (n − 1)-form on Rn, we define its integral on the boundary of In by
linearity, i.e. ∫

∂In
ω :=

n∑
i=1

(−1)i
∫
In−1

(
b∗i,0ω − b∗i,1ω

)
.
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For computing, it will be convenient to use the notation

ω =

n∑
i=1

ωi with ωi = fi(x1, · · · , xn)dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn,

and notice that for ε = 0 or 1,

b∗i,εωj(x1, · · · , x̂i, · · · , xn) =

{
0 if i 6= j,

fi(x1, · · · , ε, · · · , xn)dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn if i = j,

where the ε is at place i.
Hence, grouping opposite faces and applying the fundamental theorem of dif-
ferential and integral calculus, we get the following expressions for

∫
∂In

ω :

n∑
i=1

(−1)i
∫
In−1

[fi(x1, · · · , 0, · · · , xn)− fi(x1, · · · , 1, · · · , xn)] dx1 ∧ · · · ∧ ˆdxi ∧ · · · dxn

=

n∑
i=1

(−1)i−1

(∫ 1

0

∂fi
∂xi

(x1, · · · , xn)dxi

)
dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn

=

n∑
i=1

(−1)i−1

(∫ 1

0

∂fi
∂xi

(x1, · · · , xn)dxi

)
dx1 · · · ˆdxi · · · dxn

=

n∑
i=1

(−1)i−1

∫
In

∂fi
∂xi

(x1, · · · , xn)dx1 · · · dxn

=

n∑
i=1

(−1)i−1

∫
In

∂fi
∂xi

(x1, · · · , xn)dx1 ∧ · · · ∧ dxn

=

n∑
i=1

∫
In

∂fi
∂xi

(x1, · · · , xn)dxi ∧ dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn

=

∫
In

n∑
i=1

dfi(x1, · · · , xn) ∧ dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn.

In the last two lines we have used antisymetry first in the form dxi ∧ dxj =
−dxj ∧ dxi, then in the form dxj ∧ dxj = 0. Finally, we are led to define

d

(
n∑
i=1

fi(x1, · · · , xn)dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn

)

=

n∑
i=1

dfi(x1, · · · , xn) ∧ dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn.

or, abandonning the convenient notation we had chosen for the form ω,

d
(∑

ωi1···ikdxi1 ∧ · · · ∧ dxik
)

=
∑

(dωi1···ik) ∧ dxi1 ∧ · · · ∧ dxik .
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Of course, this is a purely computational formula in coordinates which does not
make clear what is the action of dω on an arbitrary (k+ 1)-tuple of vector fields
and hence hides the fundamental relation between coboundary and bracket.
Nevertheless, before looking at the next proposition, the reader may check that
coboundary is a natural operation i.e. that d commutes to pullbacks :

ϕ∗dω = d(ϕ∗ω).

Proposition 40 The coboundary of a differential k-form ω satisfies:

dω(X1, · · ·Xk+1) =
∑k+1
i=1 (−1)i+1∂Xi

(
ω(X1, · · · , X̂i, · · · , Xk+1)

)
+
∑

1≤i<j≤k+1 (−1)i+jω
(
[Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xk+1

)
,

where X1, · · ·Xk+1 are vector fields and as usual the hat indicates the absence
of the term which wears the hat. In particular, if α is a differential 1-form and
X,Y are vector fields,

dα(X,Y ) = ∂X
(
α(Y )

)
− ∂Y

(
α(X)

)
− α([X,Y ]).

Proof. One shows that the second term of the formula is C∞(Ω, R)-linear in each
of its arguments and that it coincides with the lexpression of d$ in coordinates,

that is when the Xi are constant vector fields of the form
∂

∂xj
.

7.7 Lie derivative and the Cartan formula

The Lie derivative of the differential form ω along the vector field X may be
defined by the formula

LXω =
d

dt

(
ϕ∗tω

)∣∣
t=0

,

in which ϕt stands for the local flow of X. It vanishes identically if and only
if ω is invariant under this flow, i.e. if for all t, one has ϕ∗tω = ω. This
definition is the same as the one for functions (LXf = ∂Xf) and vector fields
(LXY = [X,Y ]).

Interior product, Lie derivative and coboundary are linked by Cartan’s homo-
topy formula (see ....),

LXω = iXdω + diXω.

This is the infinitesimal version for the map (x, t)→ ϕt(x) (ϕt is the flow ofX) of
the homotopy formula which describes the structure of differential forms on the
product of a manifold by an interval. From this formula follows the commutation
of Lie derivative with coboundary. Note that the formula expressing the value
of the coboundary of a differential 1-forme α on a couple of vector fields X,Y
can be seen as a Leibniz formula for the Lie derivative:

LX
(
α(Y )

)
= (LXα)(Y ) + α(LXY ),

Finally, recall that a volume form π on a manifold M is invariant under the flow
of a vector field X if and only if the divergence divπX of X with respect to π,
defined by d(iXπ) = (divπX)π, identically vanishes.
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